
\

NASA-CR-191_O2

,,';A,u T

P./oF

Technical Report 1895

ASAP: Aft Ada Static Source Code

Analyzer Program

August 1987

Dennis Lee Doubleday

Department of Computer Science

University of Maryland

College Park

(NASA-CR-191402) ASAP: AN Pda

STATIC SOURCE CODE ANALYZER PROGRAM

Technic_l Report No. 1895 M.S.

Thesis (Maryland Univ.} 104 p

N93-709il

Unclas

ZQ/61 0136171

Thesis submitted to the Faculty of the Graduate School

of the University of Maryland in partial fulfillment of

the requirements for the degree of Master of Science

Research supported in part by NASA Grant NSG-5123 to the University of

Marv]and. Computer support provided in part through the facilities of

=,

z_

z

z

CONTENTS

CHAPTER I

1.1

1.2

1.3

1.4

INTRODUCTION

PURPOSE I

BACKGROUND 2

MOTIVATION 4

OVERVIEW 6

CHAPTER 2

2.1

2.2

ASAP DESIGN AND IMPLEMENTATION

DESIGN 7

IMPLEMENTATION 9

CHAPTER 3

3.1

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.6.1
3.1.6.2
3.1.7

3.1.7.1

3.1.7.2

3.1.7.3
3.2
3.3
3.3.1

3.3.2

3.3.3

3.3.4

3.3.5
3.3.6

3.4

ASAP PROCESSING

CODE ANALYSIS 10

Counting Source Lines 10

Counting Ada Statements 11

Counting Statement Nesting Depth 11

Counting Identifiers 12

Halstead Software Science Analysis 14

McCabe Cyclomatic Complexity Analysis 18

Integration Into The ASAP Framework 19

Description Of McCabe Analysis 19
Additional Data Collected 21

Declarations 21

Nesting Of Module Structures . . . ; 21

Explicit Visibility And Instantiations 22
ASAP DATABASES 22

REPORTS GENERATED BY ASAP 23

The McCabe Complexity Report 24

The Statement Summary Report 24

The Unit Content Summary Report 24

The Identifier Summary Report 25

The Halstead Measures Report 26

The Project Summary Report 27
LIMITATIONS INHERENT IN THE METHOD 28

:ii7

CHAPTER 4

4.1

4.2

USING ASAP

INSTALLING ASAP 30
ASAP INVOCATION AND COMMANDLINE ARGUMENTS 30

ii

CHAPTER 5

5.1

5.2

OPERATIONAL CONSIDERATIONS

PORTABILITY 34

EXPANDABILITY AND MAINTENANCE 35

CHAPTER 6

6.1

6.2

SUMMARY AND CONCLUSION

SUMMARY 36

CONCLUSION-. 36

APPENDIX A ADA STATEMENT TYPES COUNTED

APPENDIX B ASAP IDENTIFIER CLASSIFICATIONS

APPENDIX C ASAP'S HALSTEAD OPERATORS AND OPERANDS

APPENDIX D

APPENDIX E

SAMPLE ASAP REPORTS i

ADA GRAMMAR USED BY ASAP

APPENDIX F A LEGAL COMPILATION ORDER FOR ASAP UNITS

REFERENCES

FIGURES

Fig.1ASAP Line Counts Stnmnarized 9

Fig.2 Complexity Measure Comparison 18

iii

\

CHAPTERI

INTRODUCTION

1.1 PURPOSE

The science of software engineering assumes that computer programs
have measurable qualities, the study of which can give us insight into
the software development process. Through this insight we hope to
develop new approaches to software development for the purpose of
improving the productivity of software developers as well as the
quality, reliability, and maintainability of the products they produce.
To facilitate this study, the software engineer requires automated tools
that provide him with easy access to the specific software measures that
interest him.

Currently, manyresearchers in the software engineering community
are especially interested in the development of measurements for
software written in the Ada programming language, a relatively new
language developed under the sponsorship of the United States Department
of Defense. The designers of Ada were charged with the development of a
programming language which would decrease costs associated with software
across the entire software life cycle, including not only the direct
cost of initial software development but also the indirect cost related
to the reliability, robustness, and maintainability of the original
product. Toward that end, they incorporated into their new language a
numberof modern software engineering ideas such as data abstraction,
information hiding, and generic program templates. Software engineers
quite naturally wish to study the results of software development in the
Ada environment in an attempt to determine whether or not Ada will have
the impact envisioned by its proponents. This is still an immature
field of research; production quality Ada development environments have
only very recently becomeavailable and hence the opportunities for
study of large-scale Ada software projects have been rare. Manysuch
projects are now underway, and as work in this field increases so will

- I -

the demand for automated measurement tools targeted at the Ada
environment.

-- -This paper describes and provides a user's manual for ASAP, an
automated too! for static source code analysis of programs written in
the Ada programminglanguage. The purpose of the analysis is to collect
and store information pertaining to the analyzed Ada compilation unit's
size, complexity, usage of Ada language constructs and features, and
static interface with other Adacompilation units.

1.2 BACKGROUND

Static source code analyzers have been used since the early 1970s
by workers in the fields of software measurement, maintenance, quality
assurance, and testing. In the beginning, and continuing through the
remainder of the decade, the bulk of the work in automatic static source
code analysis was FORTRAN-oriented. Not only was FORTRANthe preeminent
high-order language of the period, it also iends itself to automatic
analysis relatively well. Those dialects used prior to the introduction
of FORTRAN77, in particular, have a fairly limited set of keywords and
constructs, a rigid coding format, and a ratio of non-comment source
lines to FORTRANlanguage statements near 1:1.

Twoearly examples of static analysis programs, BRNANL [Fosdick 74]

and PACE [Fischer 77] were primarily concerned with decomposing programs

into basic control flow blocks for the purpose of analyzing control

flow. TRW also used PACE as front-end preprocessor to deliver a segment

transfer table, representing the flow between basic blocks, to a tool

called STRUCT [Brown and Fischer 78], the purpose of which is to verify

the use of structured programming techniques by FORTRAN programmers.

Another tool, the PFORT Verifier [Ryder 74], was originally designed to

check FORTRAN programs for conformance to a portable subset of FORTRAN,

but was later enhanced to check interprocedural communications through

the use of parameter lists and COMMON blocks for the purpose of

constructing a call graph [Ryder 79]. Code Auditor [Boehm, Brown and

Lipow 76] was a FORTRAN analysis tool intended to verify program

compliance with quality-control standards such as variable naming,

variable usage, and documentation.

The FORTRAN Automatic Code Evaluation System (FACES) [Ramamoorthy

and Ho 74,75] was a more ambitious undertaking. Its development

required on the order of six man-years of effort at Marshall Space

Flight Center. It consists of a parser front-end which builds tables

containing information derived from the parsing process which are then

used by back-end diagnostic routines which allow the user a fixed set of

queries to make on the data. Examples of analytical operations

supported include checking for use of uninitialized Variables, verifying

name and dimension agreement for COMMON-block elements, verifying

agreement between formal and actual parameter lists, and tracing

-2 -

interdependence among local program variables for the purpose of
isolating bugs. FACESalso provides symbol and symbol usage information
and flags statically unreachable code.

Very similar to FACESis DAVE[Osterweil and Fosdick 75,76], which

also utilizes tables built by a parser front-end, allows a fixed set of

user queries on the tables, and collects much of the same information as

FACES. Unlike FACES, though, DAVE is able to perform global variable

initialization checking and tracing analyses. FAST (FORTRAN Analysis

System) [Browne and Johnson 78] builds upon the achievements of FACES

and DAVE by collecting similar information but storing it using a

general purpose data management system and supplying a query language

which allows the user great latitude in formulating queries on the
collected data.

Static analysis tools have also been used by researchers

investigating formal program verification. R.C. Waters used such a

tool with an eye toward aiding in the formal verification of loops
[Waters 79]. The tool used in the study used a preprocessor to

translate FORTRAN or Lisp programs into a language-independent

representation before processing. In another case, a FORTRAN analyzer

was used to aid in program verification by checking the correspondence
between data lists and format lists in I/O statements [Abrahams and

Clarke 79].

Static analysis is combined with dynamic analysis and test case

generation in another FORTRAN analysis tool called SADAT [Voges,

Gmeiner, and yon Mayrhauser 80]. The static analysis portion of SADAT

collects information about symbol usage and static control flow.

A growing interest during this period in specific proposed software

complexity measures led to the construction of many static analysis

tools for the calculation of those measures. Inspired by the new
discipline of Software Science [Halstead 72,77], Ottenstein created a

tool [Ottenstein 76] for the counting of Halstead operands and operators

in ANSI FORTRAN programs. McCabe's Cyclomatic Complexity [McCabe 76] is

calculated, along with the authors' "knots" measure of complexity, by

another FORTRAN analysis tool [Woodward, Hennell and Hedley 79]. SAP, a

FORTRAN 77 analysis tool produced at the Software Engineering

Laboratory, performs Halstead and McCabe analyses and calculates an SEL

measure of complexity based on statistical weighting of program

elements. It also collects line counts, module counts, and various

other counts thought to be useful to the software engineer [O'Neill,

Waligora, and Goorevich 78], [Decker and Taylor 82]. SAP was used as

the model for ASAP. More recently, a FORTRAN analysis tool was
described [Kafura and Reddy 87] which calculates seven metrics, three

code metrics (lines of code, McCabe's v(G) and Halstead's E) and four

structure metrics (Henry and Kafura's Information Flow, McClure's

Control Flow, Woodfield's Syntactic Interconnection, and Yau and

Collofello's Logical Stability).

-3-

In this decade, static analyzers aimed at languages other than
FORTRANhave begun to appear. PEEK[Elshoff 82] analyzes PL/I programs
and calculates numerousmeasures, including Halstead and McCabe values.
A Pascal-orlented static analyzer which calculates the Halstead and
McCabevalues as well as Belady's "Band" metric exists [Jensen and
Valravan 85]. Also, Software Science measureshave been collected from
APLprograms using a static analyzer [Konstam and Wood85]. This author
is unaware of the mention of any such analysis tool for the Ada language
in the literature to date.

1.3 MOTIVATION

The primary motivation for the construction of the ASAP tool is to

aid software engineering researchers interested in studying projects

coded in the Ada language _] There is ampl_ p_idenee_i_ the literature of

the utility of such tools for workers studying programming practices in I

earlier programming language environments. Particularly if the project

is one of large scale, it is not feasible to collect manually code

metrics such as those collected by ASAP.

Static source code metrics have been an important feature of

numerous studies concerning software quality, maintenance, errors,

effort, and development. An important early study [Boehm, Brown, and

Lipow 76] argued that automated tools for checking that code complies

with certain agreed-upon standards can have a significant effect on

software quality. Basili and Reiter concluded [Basill and Reiter 79]

that program size metrics such as lines of code, number of decisions,
and number of routines had, by that time, "demonstrated reasonable

utility" and that the McCabe v(G) and its variations had "shown very
encouraging potential for usefulness as measures of product quality."

One of the simplest of code metrics, lines of code, was the basic

measure in an early attempt to correlate program size with various

observed resource measures, including effort [Walston and Felix 77]. In

[Dunsmore and Gannon 80], statically-collected measures such as average

nesting depth, ratio of global to local variables and formal parameters,
and the number of variables per statement were used in an analysis of

the effect of those factors on programmer effort as reflected in the

number of changes required. Various researchers have tried, with more

or less success, to find a correlation between the various Software

Science measures and programmer effort [Halstead 78], [Woodfield 79],

[Gordon 79]. Another Software Science study [Baker and Zweben 79]

argued that Halstead's E measure could "provide quantitative answers to

questions concerning the conditions under which modularization is
beneficial." More recent studies have been less sanguine about the

utility of Software Science measures. A large scale study of FORTRAN

code [Basili, Selby, and Phillips 83] found that neither Halstead's E

nor McCabe's v(G) related convincingly better with effort than lines of

code. Basili [Basili 81] looked at a variety of complexity metrics in

-4-

the SELenvironment and concluded that, although there did exist some
relationship between the complexity metrics and effort and errors, the
link was not muchstronger than that of lines of code or executable
statements. Somerecent studies have reported confirmation of Software
Science theory in some respects but disagreement in others ([Shen,
Conte, and Dunsmore 83], [Konstam and Wood85], [Jensen and Vairavan
85]), while others have been critical of both the theory and its
underlying empirical support [Hamer and Frewin 82], [Kearney, et al.
86]. The latter study attacks the use of McCabe's v(G) as well.
Although there seems to be less enthusiasm for Software Science today
than existed only a few years ago, there is still room for debate. If
software engineers interested in Ada wish to build on previous work in
this area, a tool such as ASAP is a necessity.

Code metrics have also been useful in software error studies.

Thayer argued [Thayer 75] that program size (in terms of source

statements) correlated best, among the factors he considered, with
actual error rates. Perricone [Perricone 81] correlated module size

with McCabe's measure for the purpose of determining whether or not

larger modules were more dense (or complex) than smaller modules

containing errors. He also correlated size to number of subroutine

calls per module since it was observed that errors occurred with greater

frequency at interface points.

Some studies have looked at various static metrics to determine

their predictive power regarding the difficulty of software maintenance.

One such study [Curtis, et al. 79] found a weak correlation between all

three of Halstead's E, McCabe's v(G), and lines of code with

psychological complexity as measured by the difficulty involved in
performing a maintenance task (although the correlation was stronger for

novice programmers), but a later study [Curtis, Sheppard, and Milliman

79] found a more satisfying correlation. The same three measures were

included in the set of seven complexity metrics that Kafura and Reddy

used in a study which led them to argue that the metrics can be used to

assess and control software maintenance activities by detecting

inordinate complexity growth in individual modules [Kafura and Reddy

87]. In another study of maintenance activities [Rombach 87], Rombach

found that a set of static complexity metrics showed good predictive

power of effort required for most aspects of maintenance.

Automated analysis has also proven useful in studies attempting to

identify a characteristic set of metrics for a particular environment.
Elshoff performed such a study in a PL/I environment [Elshoff 84] and
concluded that his characteristic set should be the Halstead measures

length (N), unique operators and operands (nl and n2), and data

difficulty (N2/n2). All of these measures are either calculated by ASAP

or readily available from ASAP data. A similar study in a FORTRAN

environment [Basili and Selby 85] also considered non-code metrics. Of

the six metrics chosen, only two were code metrics (source lines and I/O

parameters); these metrics are calculated by ASAP as well.

-5 -

1.4 OVERVIEW

Chapter Two of this document discusses the ASAP design process and

presents some statistics about the finished implementation. Chapter

Three describes in detail the methods used by ASAP to perform various

counting functions and program measurement calculations, the

implementation of ASAP analysis database files, and the various reports

generated by ASAP. The chapter concludes by discussing some of the
limitations of the tool. Chapter Four presents all the information an

ASAP user needs to install and use the tool. Chapter Five discusses

long term operational questions of portability, expandability, and

maintenance. Chapter Six summarizes and concludes the document proper.

There are six appendices. The first three of these document Ada

enumerated types used by ASAP to enumerate Ada statements, identifier

classifications, and the predeflned Halstead operators, respectively.

Appendix D presents an example of each of the six reports ASAP can

generate. Appendix E is a listing of the LALR(1) Ada grammar used by

ASAP to parse Ada source code. Finally, Appendix F lists, in a legal

compilation order, the names of all the compilation units that comprise

ASAP.

-6-

CHAPTER 2

ASAP DESIGN AND IMPLEMENTATION

:r

2.1 DESIGN

The design of ASAP was undertaken with three preconditions in mind,

the first two the result of constraints on the finished product, the

third a conscious decision by the author:

a) The language of implementation will be Ada.

b) The finished product will execute under the DEC VMS operating

system, but system dependency will be minimized and isolated

where possible.

c) Whenever possible, ASAP will take advantage of reusable Ada

code already implemented and available fromthe Ada Software

Repository hosted on the Simtel20 computer at the White Sands
Missile Range.

Given these conditions, the first step in the design process was

naturally to determine whether or not any useful code was available from

the Ada Software Repository (henceforth abbreviated ASR), an online

library of public domain software developed, for the most part, by

United States government agencies or private companies under contract to

the government: The author's investigation of the ASR revealed that
there was, in fact, a large body of code which could be incorporated

into ASAP either intact or with an acceptable level of modification.

The components of this reusable body of code ranged from packages of

general utility, e.g. generic stack and generic list, to packages whose

function closely corresponded to functions required for the implement-

ation of ASAP. The most important of the latter group were the packages

implementing an LALR(1) parser for the Ada language.

-7-

r 7%

The decision to use the parser dictated a basic framework for ASAP

processing. The following pseudocode describes at a very high level the

ASAP algorithm :

get the command line arguments

WHILE there are more Ada tokens in the source file LOOP

get the next token

IF parser shift action THEN

put token on stack

ELSIF parser reduce action

perform the ASAP actions appropriate to this

grammar reduction (may include generating reports)
END IF

END LOOP

do summary report if requested

The next step in the design process was to identify the Ada source

code measurements which would be of interest to a software engineer and
whether or not the collection of each of these measures was feasible.

The first part, identification, was fairly straightforward; the author

was guided by previous work in this area by Basili and Katz [Basili and

Katz 83] and by previous work in the measurement of Fortran programs

done at the Software Engineering Laboratory at Goddard Space Flight

Center [O'Neill, Waligora, and Goorevlch 78], [Decker and Taylor 82].

The second part, determination of feasibility, was more difficult,

largely because of the author's lack of experience in code analysis in

general and unfamiliarity with Ada at the start of the design phase.

Eventually, after numerous false starts, it became apparent that most of

thedesired measurements were collectible with reasonable effort. The

author was reluctantly forced to conclude, however , that it was not

reasonabl@ within the eontex_igf a one-person effort to ah_empt to

support Ada's separate compiiati0n fea£Ur6swithlfnilAS_P. This means

that each Ada compilation unit is analyzed strictly on the basis of the

code presented to ASAP; no implicit contextual information from other

units is considered. The limitations imposed on ASAP by this decision

are discussed in detail in Chapter Three. It is the author's position

that, although an ASAP that supported separate compilation would

undoubtedly be a better tool, ASAP as it stands still supplies much

valuable information about the content and complexity of Ada code.

The next step, once the measurements to be collected had been

determined, was to identify the data structures and operations required

to effect their collection. The abstract data object packages from the

ASR again proved to be very useful during this phase of the design

process. In some cases, such as an abstract stack or ordered set

package, the requirements of ASAP could be served simply by

instantiating the package with the appropriate data type as the element.

In other cases an existing package lacked the required functionality but

still served as a useful model for the design and implementation of a

new package.

-8-

The final, and more detailed, phase of design was to determine what
ope_'ations were to be performed after each grammarreduction. This was
a painstaking process owing to the size of the Ada grammarused, and the
initial association of each grammarproduction rule to a (possibly null)
set of operations was revised many times during the implementation
phase.

2.2 IMPLEMENTATION

Implementation of ASAPwas begun in April 1986 and completed in
March 1987. Code development was for the most part done on a VAX 11/785
running VMSversion 4.5 and using DECAda Version 1.3 as the development

tool. The final product consists of 92 Ada compilation units, of which

33 were written by the author expressly to implement ASAP, 9 are largely

reused but modified to some extent, and 50 are completely reused

compilation units. Figure I summarizes the line counts (computed by

ASAP) for each of the three categories.

Figure I

ISOURCE LINES TOTAL CODE COMMENT BLANK I

New units (33) 9117 5075 2743 1299

Modified units (9) 2949 1166 1006 777

Reused units (49) 15230 7169 4830 3231

I TOTALS 27296 13410 8579 5309 I

Note that only 49 units are included in the counts for reused units.

This is because the automatically-generated parse tables in package body

ParseTables are so large that ASAP was unable to parse them within a

reasonable time frame and thus unable to collect line counts. The body

of ParseTables consists of an additional 3,818 lines of Ada source,

bringing the actual total to 31,114 source lines.

-9-

CHAPTER 3

ASAP PROCESSING

3.1 CODE ANALYSIS

ASAP expects the file identified as the source of input to contain

syntactically-correct Ada source code and nothing else. As explained
above, the code is processed by an LALR(1) parser front end. The tables

for the parser were generated automatically by the NYU LALR Parser

Generator. The tables were originally produced for use with an Ada

pretty printer, but proved to be suitable for ASAP's purposes as well.

3.1.1 Counting Source Lines

Unlike all other counts collected by ASAP, which are effected when

grammar reductions occur, the various source line counts are calculated

by interrupting the lexical analysis process. The code to perform the

source line counts was inserted into a lexical analysis subprogram whose

purpose is to get the next non-comment token. Within that subprogram, a

call is made to get the next source token and the returned value is

checked to see if it is a comment. The code inserted at this point

determines for each Ada compilation unit the total number of source

lines, source lines containing code, blank lines, lines of comments, and

inline comments (i.e. code lines containing embedded comments.)

Leading blank and/or comment lines In a source file are counted as

part of the first compilation unit in the file. Blank and/or comment
lines between two compilation units residing in a single source file are

counted with the first of the two units. Trailing blank lines in a

source file are not counted at all. However, if the last compilation

unit in a file is followed by comment lines or a combination of blank

and comment lines, then all lines up to the last comment line are

counted with the unit. (In general, the guideline "one compilation unit

per source file" is considered good Ada programming practice.) The value

- 10-

reported for total source lines should always equal the sum of the

values reported for lines of code, comment lines, and blank lines

(inllne comments overlap with lines of code.)

3.1.2 Counting Ada Statements

ASAP counts an Ada language statement when the grammar reduction

identifying the statement occurs. The data structure used to hold the

statement counts is an array of natural numbers indexed by a type which

enumerates the set of statement types recognized by ASAP. For reporting

purposes this type is divided into two subtypes, one of which enumerates

the set of statement types which ASAP recognizes as "executable"

statements, the other the set of statement types which ASAP recognizes

as "declarative." Of course, all Ada language statements ar_ executable
in a sense since even Ada declarations are elaborated at run time. For

that reason, the descriptor "declarative" rather than "non-executable"

was chosen to classify those statement types which either declare an

identifier, establish a scope, or place the unit in some visibility

context. This classification conforms closely to our intuitive

understanding of the term "non-executable." Appendix A describes the Ada

language statements counted by ASAP.

3.1.3 Counting Statement Nesting Depth

ASAP reports the total, average, and maximum statement nesting

depth for each unit analyzed. Each time a statement is counted, the

current nesting depth is added to the total nesting depth and compared

to the maximum nesting depth to see if it is a new maximum. Therefore,

the total statement nesting dept h represents the sum of each Ada

statement's nesting depth, the average statement nesting depth is the

total nesting depth divided by the total number of Ada statements, and

the maximum statement nesting depth is the maximum nesting depth at

which any Ada statement occurred. With clauses and use clauses, as well

as the declaration of the unit itself, are considered to be at nesting

depth zero. The nesting depth is incremented by one when entering and

decremented by one when leaving any of the following:

o a package, subprogram, task, or block declarative region,

o a begln-end block,

o a loop statement,

o a case statement alternative,

-11-

o an if statement alternative,

o an exception handler alternative,

o a select statement alternative,

o an accept statement when it has an optional sequence of

statements embedded,

o a record structure,

o a generic formal declarative region,

o a private declarative region.

3.1.4 Counting Identifiers

The counting of identifiers in ASAP is done at the simple

identifier level. For instance, if the string "stackpackage.push" is

read from the source file then ASAP counts not one expanded identifier

but rather two simple identifiers, "stack_package" and "push" (the " "

operator is counted, also).

Ada identifiers are counted using methods which differ depending on

the context of the identifier's occurrence. If ASAP is unable to

determine sufficient contextual information about an identifier at the

time it is parsed, it is kept on a stack corresponding to the parser

stack until the context can be determined. There are actually two

levels of contextual discrimination. The first level determines the

basic method by which the identifier will be counted. The second level

supplies semantic information about the identifier.

At the first level of contextual discrimination, ASAP determines

which of the following three general conditions describes an occurrence

of an identifier:

a) the identifier appears in a context which is either declarative

or in some fashion introduces a new semantic meaning for the

identifier, or ._

b) the identifier appears in a non-declarative context but not in

a context described in case (c), or

c) the identifier appears in a context which indicates that it is

one of the predefined pragma or attribute names.

- 12-

In the first case the identifier is installed in the symbol table.
The'symbol table is implemented by a (not necessarily balanced) binary
search tree whosenodes are record structures containing the name and
usage count of each "declared" identifier. (Somenamesare installed in
the symbol table even though they are not declared in the proper sense
of the word. Examplesare loop and block identifiers, for-loop control
variables, and library units named in with clauses). Hung from each

node in the tree is a llst of all the ASAP-recognized semantic meanings

associated with that particular identifier. An identifier is installed

by first searching the symbol table to detect the prior presence or

absence of the identifier; Zhen, if the identifier has already been

installed a new semantic meaning is appended to the node and the usage

count incremented. Otherwise, a new node with a usage count of one is

created for the identifier and the semantic information appended. The

semantic information collected by ASAP is crude; for each identifier
Instance it:

a) determines the module scope in which each declaration occurs;

b) assigns it an ASAP symbol classification;

c) determines additional information about the identifier

instance, the nature of which varies depending on the

classification of the identifier instance.

ASAP will report that unit name itself and any library units named in

with clauses are declared "global to unit." All other scopes are as

expected. The ASAP symbol classification values and the additional

information which may be associated with each are described in Appendix

B. For example, if the procedure specification

procedure push (s: in out stack; e : element);

were encountered while analyzing the unit stack_package, three entries

would be made in the symbol table:

a) the identifier "push" with scope "stack_package",

classification "proc" and additional information "spec";

b)

c)

the identifier "s" with

classification "formal", and

which is its type;

scope "stack_package. push",

additional information "stack",

and the identifier "e", whose scope and classification match
those of "s" but whose additional information field is

"element."

In the second contextual case no symbol table installation occurs.

If the identifier exists in the symbol table, then the usage count for

that identifier is incremented. Otherwise, the identifier is added to

one of two abstract counted ordered set objects. These sets maintain

the usage counts of the identifiers whose declarations occurred

- 13-

somewhere outside the scope of the unit currently being analyzed. (A

point should be made here: ASAP considers a scope to extend no further

than the syntactic boundaries of a compilation unit since its analysis

does not support separate compilation. Hence, although the Ada language

definition [DOD 1983] says that the scope of a package, for instance,

includes both its specification and body, ASAP analyzes them

independently and therefore treats them as separate scopes). There are
two sets rather than just one for reasons having to do with the

requirements of the Halstead analysis , which is described in the next
section. Each undeclared identifier is entered in the set representing

Halstead operands unless it can be determined by the identifier context
that it should be counted as a Halstead operator (e.g., the identifier

specified as the final simple identifier in an expanded name in a

procedure call is counted as a Halstead operator.)

In the third contextual case, the identifier should be part of a

finite set of names representing the predefined pragmas and attributes.

Therefore, each is counted by converting the identifier to an enumerated

type literal and incrementing the count indexed by the literal in an

array of natural numbers.

The second level of contextual discrimination occurs when ASAP

knows which of the three above methods {usually the first) is

appropriate for the identifier but doesn't know enough about the context

yet to carry through with the operation. For example, in the above

procedure specification, the identifier "push" must be installed.

However, ASAP cannot do so until it sees the semicolon, for until then

it could be a specification or a body. In the meantime, ASAP parses the

formal parameters of "push" and knows that they must be installed. It

cannot do so, though, until "push" is installed or the scope of

definition for the parameters will be incorrect. Therefore, none of the

three identifiers is installed until the ";" is parsed.

3.1.5 Halstead Software Science Analysis

ASAP collects or computes 16 of the source code measures identified

by Halstead [Haistead 77]. The primary thrust of Halstead's book is

that each and every element of a computer program can be categorized as

either an operator or an operand and that software complexity can be

measured according to its use of these operators and operands.

ASAP considers the following elements to be Halstead operators:

a) all Ada reserved words or structures of Ada reserved words;

b) all Ada delimiters;

..... #

- 14-

c) all predefined Ada pragmanames;

d) all predefined Ada attribute names;

e) all undeclared identifiers entered

ASAP_Declarations.OperatorIds;

in the set object

f) any declared identifiers which ASAP has given a SymbolClassType

"fen" "gen_fcn", "gen_proc",value of either "entryname",

"proc", "renam fcn_', or "renam_.proc" (see Appendix B for a

description of these.)
°.. -

In some cases identical reserved word token(s) are counted as distinct

operators because they perform different functions in different

contexts. In other cases a group of reserved word tokens is counted as

a single distinct operator because the individual tokens combine to

perform one function. See Appendix C for a detailed description of the

author's enumeration of the Ada reserved word, delimiter, pragma, and

attribute Halstead operators.

ASAP considers the following elements to be Halstead operands:

a) all undeclared identifiers, numeric literals, character

llterals, or string literals entered in the set object

ASAP_Declarations.Operands;

b) any declared identifiers which ASAP has given a SymbolClassType
value other than those considered Halstead operators (see

Appendix B.)

For any programming language, but especially for one as large as
Ada, there are gray areas in any scheme for classifying its elements as
Halstead operators or operands; others may not agree with every choice

made by the designer of the scheme. The author believes his
classification scheme is as reasonable as the next. One debatable

point, however, is the treatment of identifiers representing Ada tasks.
This classification considers the task identifiers to be Halstead

operands and the task entry identifiers to be Halstead operators. One
reason for this is that the task's relationship to its entries is quite

similar to that of the package and its subprograms, and this scheme

counts package names as operands and subprogram names as operators.

Another is that the language definition [DOD 1983] treats tasks very

much like other objects, allowing the definition of task types and the

declaration of task objects of those types. This makes it very
difficult to recognize a task as distinct from other objects if the task
type is declared outside the unit and an object of that type is declared
within the unit. Since we intuitively think of objects as operands

anyway, tasks are counted as operands here.

- 15-

Following are descriptions of the Halstead measurement values

either collected by ASAP directly from the source or computed from
collected values. [Halstead 77] is the appropriate source for detailed
information about these measures.

o Unique Operators (nl): computed by adding I for every reserved

word (structure), delimiter, pragma, or attribute with usage
count greater than zero, for every element in the set

OperatorIds, and for every node in the symbol table classified
as Halstead operator.

o _Operands_ computed by adding 1 for every element
in the set Operands and for every node in the symbol table
classified as Halstead operand.

o Total Operators N_N/): computed by adding the usage count for

every reserved word (structure), delimiter, pragma, or
attribute, for every element in the set OperatorIds, and for
every node in the symbol table classified as Halstead operator.

o Total Operands N2!_.- computed by adding the usage count for
every element in the set Operands and for every node in the
symbol table classified as Halstead operand.

o Potential Operators (n1*): computed by adding 2 for every node
in the symbol table classified as Halstead operator. Halstead

states that at least two operators are required to implement

any algorithm [Halstead 77] and each such node in the symbol
table represents an algorithm.

o Potential Operands (n2*): computed by adding I for every node

in the symbol table classified as "formal" and for every

identifier in the Operands set (not the literals.) By

definition, the potential operands are all the input/output
parameters [Halstead 77]. Therefore, any formal parameter

identifier is counted as are all externally-declared
identifiers, since they can be considered parameters from
outside the unit.

o Vocabulary Size (n = nl + n2): The computation is apparent
from the formula:

o Program Len_ep_gth(N : NI + N2): The computation is apparent from
the formula.

o Predl_d Program Length (N' =-nl x log(nl)_+:+n2 x log(n2)):

The computation is apparent from the formula. The "log"

function referenced is log base 2 in this an-d the following

formulae. The value is undefined if either nl or n2 equals
zero.

- 16-

o

O

Program Volume (V = N x log(nl + n2)):

apparent from the formula.

The computation is

Potential Program Volume (V* : (n1* + n2*) x log(nI* + n2*)):

The computation is apparent from the formula. The value is
undefined if the sum of n1* and n2* is zero.

0 Program Level (L : V* / V):
the formula. The value

undefined.

The computation is apparent from
is undefined if V is zero or V* is

0 Language Level (lambda = (V* x V*) / V): The computation is

apparent from the formula. The value is undefined if V is zero
or V* is undefined.

0 Predicted Effort (E = V / L):
the formula. The value is

undefined.

The computation is apparent from
undefined if L is zero or V is

Predicted Time (T : E / S): where S : 64,800 : number of

mental discriminations/hour [Halstead 77]. The "hours" unit of

measure for T is used rather than the more usual "seconds"

because it seems to be the more readily understandable

quantity. The computation is apparent from the formula. The
value is undefined if E is undefined.

O Predicted_ (B = V / e): where e = 3,000 = the mean number
of mental discriminations between errors [Halstead 77]. The

computation is apparent from the formula. The value is
undefined if V is undefined.

It is the author's opinion based on informal experimentation on his

own code that the Program Length and Program Volume measures correspond

reasonably well with the author's subjective evaluation of relative code

complexity, particularly when comparing compilation units of the same

type. Predicted Effort and the related measure Predicted Time sometimes

correspond well, but may at times produce extremely misleading results.
This is because the computation of each of these measures relies

directly or indirectly on the Potential Operator and Potential Operand

values, which are highly dependent on the nature of the compilation unit

analyzed. A package specification containing no subprogramdeclarations

and referencing few external names will have few potential operands and

no potential operators but a subprogram body that uses many external
identifiers (or a package body which declares numerous subprograms) will

have many potential operands and/or potential operators. The source
code for ASAP itself presents us with an example. ASAP_Declarations is

an example of the first type of compilation unit, Parser. Apply_Actions

an example of the second. By any reasonable measurement, the latter is

a much more complex piece of Ada code. Measurements such as Lines of

Code, Ada Statements Count, Program Length, and Program Volume are all

- 17-

in agreement (see Figure 2.)

Figure 2

I I ASAPDeclarations I Parser.Apply_Actionsl

Lines Of Code

Statements

Program Length

Program Volume

Potential Ops

!
I Pred. Effort

I
I Pred. Time

374 1346

38 721

857 8442

7373 79434

7 272

2766491 2868352

42.69 44.26

But, because of the disparity between their respective potential counts,
their Predicted Effort and Predicted Time values are virtually

identical. These measures are evidently useful only when comparing

compilation units of similar type and with similar levels of external

interface, and even then the question is in doubt (see [Hamer and Frewin
82].) Whether this is an inherent inability of the Predicted Effort and

Time formulae to account for wldely-differing types of units or a fault

in the method used to compute these values is left to others to decide.

3.1.6 McCabe Cyclomatic Complexity Analysis

A McCabe Cyclomatic Complexity analysis [McCabe 76] is performed by

ASAP. Approximately 90% of the source code implementing this analysis

is reused from an existing tool found in the ASR. The documentation

accompanying the tool indicates that it was written at Intermetrics,

Inc. by Michael Gordon under government contract and resides in the

public domain.

- 18-

3.1.6.1 Integration Into The ASAPFramework

The reused McCabetool approaches Ada source code analysis in a

fashion quite similar to that of ASAP, i.e. the source is parsed and

the appropriate analytical actions are performed at each grammar
reduction. The tool would have been quite simple to integrate into ASAP

except for the fact that the two tools used different Ada grammars.

Consequently, some grammar production rules for which the McCabe tool

performed actions did not exist in the ASAP grammar or existed in a

different form. An additional problem was that the implementation of

the McCabe analysis depends heavily on backing up through the parser

stack looking for constant values representing specific grammar

non-terminals; since the ASAP grammar contains different non-terminals
these constant values had to be altered. These problems made

integration of the tool into the ASAP framework more time-consuming than

expected but still much preferable to writing the tool from scratch.

The following steps were necessary to integrate the McCabe tool into the
ASAP framework:

o The user interface portion of the McCabe tool was scrapped and

initialization functions performed by ASAP.

O The reporting format was materially altered: a new header

consistent with other ASAP report headers was substituted, page

layout changed, and allowances made for printing lengthy (more

than one line) expanded Ada names for each module analyzed.

Four procedures were modified to accomplish this.

o The constant names representing 40 grammar symbols were

assigned new values to correspond to the Ada grammar used by

ASAP; also, six new constant names were added, corresponding to

grammar symbols not previously present.

o Five procedures were modified and two new procedures added to

accommodate the processing changes required by the change in

grammar.

o The code was modified so that total complexity is reported for

each compilation unit rather than each source file.

3.1.6.2 Description Of McCabe Analysis

The McCabe measure of complexity is based on the control structure

of a program. Hence, this measure applies only to Ada compilation units

containing executable statements, i.e. subprogram or task bodies or

package bodies containing one or both. The cyclomatic complexity of a

specification will always be reported as Zero.

- 19-

The McCabemetric is based on the flow graph of a program. The
flow graph is a directed graph where the nodes represent basic blocks
and the edges represent control flow between basic blocks. A basic
block is a sequenceof consecutive statements which mayonly be entered
at the beginning and exited at the end. McCabe's cyclomatic complexity
is defined as:

V(G) : e - n + 2p

where 'e' is the numberof edges in the flow graph, 'n' is the numberof
nodes, and 'p' is the numberof connected components. Ignoring the
direction from the edges of the flow graph, if there exists a path
between each pair of vertices I and J then we say the graph is a
connected component. Since there is a path from the entry node to every
other node in the flow graph then (ignoring the directions of the edges)
wewill be able to get from any node I to any other node J by going
through the entry node. Therefore, when computing the cyclomatic
complexity for an individual subprogram p is always I. Whencalculating
the cyclomatic complexity of a unit which contains nested subprograms or
tasks, p is equal to the numberof subprogram or task bodies contained
within the unit.

The following discussion of the McCabe complexity analysis is

quoted (with a few elisions and minor grammatical changes) from the
documentation which accompanied the original tool. The source of the

documentation is uncredited, but the author assumes that it is

attributable to Michael Gordon as well.

"The McCabe complexity measure is principally useful in two ways:

as an aid in testing and as a numeric guideline for management purposes.

In testing, the complexity number corresponds to the number of control

paths through a subprogr_ and i _herefore _i-t6e_ numSer of tes_ cases

required to test them all. If the number Of test cases is less than the

complexity, then_at least one of three conditions is true:

a) more testing is required;

b) decision points can be removed;

c) in-line code can repiace decision points:.

(See [McCabe 76] for a full explanation.) As a programming and

management guideline the tool provides a simple way of flagging

subprograms which might cause problems. The measure is only a guideline

since a large CASE statement will have a correspondingly large

complexity but it may only be the equivalent of a jump table."

"If a subprogram has some unreachable code then McCabe's cyclomatic

complexity formula does not make a lot of sense. In some cases the tool

discovers such subprograms and flags them in the output with the message
'unreachable code' "

- 20 -

"There are several Ada statements which generate flow but building
a flow graph for them is not obvious. Sometimesthis is because of the
limits of the tool. For instance, from a raise statement flow could go
to an exception handler belonging to the samesubprogram as the raise
statement, or it could go to a different subprogram, in which case the
tool does not have enough information to track the flow. Following is a
llst of such statements with their corresponding interpretations.

o The complexity of an exception handler is added to the

complexity of the containing subprogram.

o Case statements, select statements and exception handlers are

interpreted like if statements. For a case statement the

corresponding if statement always has an else clause. Two
forms of the select statement (conditional entry call and timed

entry call) are always interpreted as having only one if part

and one else part.

o Return, raise and terminate statements are ignored (treated

like a stop statement in [McCabe 76])."

3.1.7 Additional Data Collected

This section describes miscellaneous

collected by ASAP.

additional information

3.1.7.1 Declarations

The Ada language definition [DOD 1983] in some cases allows the
declaration of multiple identifiers with one declarative statement.

Therefore ASAP reports the total number of identifiers declared to be

objects, constants, formal parameters (including generic formals), and

exceptions in addition to the number of statements declaring those

identifiers.

3.1.7.2 Nesting Of Module Structures

ASAP summarizes for each analyzed compilation unit the extent of

module nesting within the unit by reporting the total number of package,

subprogram, or task specifications, bodies, or body stubs found during

the analysis.

-21 -

f

3.1.7.3 Explicit Visibility And Instantiations

ASAP reports all names appearing in with clauses and use clauses.

All names reported as appearing in with clauses will be simple names,

but the names appearing in use clauses may be either simple or expanded

names. ASAP also reports the (possibly expanded) names of all generic

modules instantiated in the unlt as well as the number of times each is

instantiated.

3.2 ASAP DATABASES

A subset of the data resulting from an ASAP analysis may be stored,

if the user so desires, in an ASAP database. An ASAP database is

implemented as an indexed sequential file of records which is indexed by

the fully expanded Ada names (with appended unit descriptors} of the

compilation units analyzed. ASAP currently supports expanded Ada names

of up to 200 characters in length, an arbitrary upper bound which is

easily extended. Identical index keys are not allowed; an attempt, for

example, to enter a package specification named "stack_package" into a

database where another package specification with the same name already

resides will cause the data for the original specification to be

overwritten. The descriptors mentioned above are of the form "(XY)"

where XY is one of SS, SB, SI, PS, PB, PI, or TB, indicating that the

unit is a subprogram specification, subprogram body, subprogram

instantlation, package specification, package body, package

instantiation, or task body, respectively.

Each record in the database contains information about a specific

compilation unit. Aside from the unit name and descriptor, a record

contains:

o two enumerated type fields identifying the unit in the same

manner as the descriptor (these redundant fields are included

because they make the process of constructing a Project Summary

Report more efficient);

o the usage count for every kind of Ada statement;

o the number of units named in with clauses;

o the number of instantiations;

o the numbers of constants,

parameters declared;

objects, exceptions, and formal

o the number of source lines of code, comment lines, blank lines,

and inline comments;

- 22 -

o the maximum and average statement nesting depths;

o the McCabe complexity number for the unit;

o all the Halstead measures mentioned above with the exception of

Vocabulary (which is easily reeomputed from Total Operators and

Operands);

o a flag indicating whether or not the analysis of the unit was

complete (the user has the option to do a partial analysis).

Typically, an ASAP database will be used to store ASAP analysis

results for all the source code associated with a project. The Project

Database provides the manager of a large-scale Ada software development

project with an excellent tool for preserving snapshots of the

development of the project at various "baseline" states, beginning as

early as the detailed design phase if the detailed design is written in

a compilable Ada PDL. This may prove especially useful if an iterative

enhancement development method [Basili and Turner 75] is employed.

Since all interface to ASAP is through its command line arguments (see

Section 4.2), a snapshot Project Database could be created quite easily

by a batch Job which would collect the names of all source files

associated with the project and pass them, along with the name of an

ASAP database file, as arguments to ASAP.

Of course, ASAP databases are not true databases, i.e. there is no

query language associated with them which would allow interactive

retrieval of subsets of the data. At present, the Project Summary

Report is the only source of information from the database. It would

not be difficult, though, to use the data stored in an ASAP database as

input to utility programs which would generate additional windows on the
raw data.

ASAP provides facilities for creating a new database, adding a unit

to a database, updating an existing unit record, and deleting a unit
record from a database. Access to information in the database is

provided through the Project S_ry Report (see next section).

3.3 REPORTS GENERATED BY ASAP

ASAP can produce a total of six reports. One of these is the

Project Summary Report, which displays and summarizes information about

all units entered into a specific ASAP database. The other five (the

Identifier Summary Report, the Statement Summary Report, the Unit

Content Summary Report, the McCabe Complexity Report, and the Halstead

Measures Report) display more detailed information about a specific Ada

compilation unit. The following sections describe each of these reports

in detail. A sample instance of each report is reproduced in Appendix

- 23 -

D.

L_

3.3.1 The McCabe Complexity Report

For every subprogram or task body in the compilation unit, ASAP

displays the cyclomatic complexity of the module, the number of edges

and nodes in the flow graph of the module and the name of the subprogram
or task, qualified by the unit name (unless the unit is the module). If

the unit is a subunit, the name of the parent unit is displayed only in

the header of the report. If the qualified name of the module will not

fit within the field allotted for it, the name wraps onto one or two

more lines of the report. Any name extending beyond three lines is
truncated.

3.3.2 The Statement Summary Report

For every type of Ada statement which occurred at least once in the

analyzed unit, ASAP displays the ASAP name for the statement (see

Appendix A for an enumeration), the number of times the statement

occurred, the percentage of the total statement count represented by the

statement, and a bar graph visually representing the percentage. At the

conclusion of the report appears the total statement count, which is
then broken down into executable and declarative statements. The sum of

the percentages of the individual statements may not be exactly 100
because of rounding error.

3.3.3 The Unit Content Summary Report

The Unit Content Summary Report collects and displays miscellaneous

data about the content of the compilation unit. Included here are:

o total source lines, total source lines of code, total source

comment lines, total blank lines, and total inline comments

(comments embedded on code lines);

total Ada language statements, the maximum nesting depth at

which a Statement occurred, the totai-statement nesting depth,

formal parameters,

package, and task

and the average statement nesting depth;

o the total number of 0bJebtsi constants,

exceptions, types, and subtypes declared;

o the total number by type of subprogram,

modules encountered (including the unit itself);

- 24 -

O

O

O

the names of all identifiers found in with clauses;

all names of all identifiers found in use clauses (may include

expanded names);

the names of all instantiated modules (may include expanded

names) and the total number of times each was instantiated.

3.3.4 The Identifier Summary Report

The Identifier Summary Report summarizes ASAP-collected data about

the usage of identifiers in the compilation unit. The report consists

of two parts, one to report information about identifiers "declared" (in
the sense described in Section 3.1.3) within the unit and the other to

report usage counts for the remaining identifiers encountered.

In the first part, all information maintained in the symbol table

is displayed. For each node in the symbol table at least one line

containing the following five data fields is written:

I) the total usage count for the identifier (maximum 99,999);

2) the name of the identifier (30-character field, any longer

names truncated on the right);

3) the ASAP symbol classification value for the first semantic

meaning of the identifier (see Appendix B);

4) a miscellaneous additional information field for the first

semantic meaning of the identifier (40-character field,

anything longer truncated on the right);

5) the scope in which the first declaration of the identifier

occurred (43-character field, anything longer truncated on the

right).

If an identifier has more than one ASAP-recognized semantic meaning then

the symbol classification, additional information, and scope for each

additional meaning of the identifier will be written on an immediately

following line.

The type of information available in the "additional information"

field will vary depending on the classification of the identifier. For

example, if the identifier defines a type it will have classification

"typename" and the additional information field will describe the kind

of type (array, integer, record, etc.) whereas if the identifier defines

an object then the classification is "object" and the additional

information is the Ada type of the object, exactly as it appears in the

- 25 -

object declaration. See Appendix B for further details.

The "scope" field contains the name of the scope in which the

declaration occurred. If this field is blank, then the default (the

unit scope) is assumed. If the "scope" begins with a ' ' then the

actual scope is the "scope" field appended to the full unit name, which

appears in the header. The words "Global to unit" will appear in the

"scope" field for the unit identifier as well as those of any library
units named in with clauses.

Note that an identifier may have associated with it numerous

semantic meaning lines of which many or all could be identical. This

can happen if, for example, a procedure name is overloaded several times

in a package specification. Since ASAP knows nothing of type-checking,

in each case the classification "PROC", the additional information

"SPEC" and the default scope will be displayed.

In the second part of the report are displayed the names and usage

counts of all identifiers for which no declarations were found. They

are displayed in two separate lists: those thought to be classifiable

as Halstead operators and those thought to be classifiable as Halstead

operands.

In both the first and second parts of the report the names are

displayed in case-lnsensitive sorted order (within their respective

subgroups.) At the end of each part, ASAP outputs the total identifier

and usage counts.

3.3.5 The Halstead Measures Report

The Halstead Measures Report consists of three sections. In the

first two sections ASAP lists the Ha!stead operands and operators and

the usage count for each one. The third section is a display of the
various Halstead measurements calculated.

In each of the first two sections, the usage count and name of

every identifier classified as operand (in the first section) or

operator (in the second section) are displayed. This is done in two

sorted subsections for each section, the first consisting of the

declared identifiers, the second made up of the undeclared identifiers.

At the end of the operand section, ASAP summarizes the number and

usage of unique string, character, and numeric literals, all of which

are classified as Halstead operands. The individual l[terals are not

displayed. - - : --

After the identifiers classified as Halstead operators have been

displayed, ASAP lists the counts for reserved words and reserved word

structures, delimiters, predefined pragma names, and predefined

- 26 -

attribute names, all of which are classified as Halstead operators.

In the third section (calculation of measurements) the name, value,

and formula for each measurement described in Section 3.1.4 is listed.

If the value for a particular measure is undefined then the word

"UNDEFINED" is displayed in lieu of a numeric value. However, if an

analysis containing undefined Halstead measurement values is stored in a
database then the value zero is stored in each undefined case.

3.3.6 The Project Summary Report

The Project Summary Report is a listing and summarization of values
across an entire ASAP database. It consists of three parts which are

called the Project Counts Summary, the Project Complexities Summary, and

the Project Global Summary.

In the Project Counts Summary ASAP displays, for each compilation

unit in the database, the following information:

the full expanded unit name and descriptor (see Section 3.2);

if the unit name is longer than the field allotted for it then

it extends beyond the boundary (possibly onto the next line)
and the numbers for the unit are displayed on the following

line;

o total source lines, lines of code, comment lines, and blank

lines;

o total Ada statements, executable statements, and declarative

statements;

o maximum and average statement nesting depths;

o total number of constants, objects, types, subtypes, formal

parameters, and exceptions declared;

o total number of package, subprogram, and task specifications,

bodies, and stubs declared;

o total number of "withed" library units;

o total number of generic instantiations.

In the Project Complexities Summary ASAP displays,

compilation unit in the database, the following information:

for every

- 27 -

o the full expandedunit name(as in the Project Counts Summary);

o the McCabeCyclomatic Complexity number;

o all the Halstead measuresdisplayed on the Halstead Measures
Report except the Vocabulary measure. Measureswhich may have
appeared as "UNDEFINED"on the Halstead Measures Report will

appear on this report as having value zero.

In both the Counts and Complexities summaries, the units are

displayed in sorted order on the name and descriptor string.

Unfortunately, the sorting is case-sensitive, so unit names beginning

with lower-case characters will appear after all unit names beginning

with upper-case characters. The sorting method is an artifact of the

indexed sequential file facility used to implement ASAP databases.

It is possible to install a unit in a database Without requesting a

complete analysis. A user must ask that all the unit reports be

generated or some portion of the analysis will be left undone. Each
unit installed in a database with less than full analytical data will be

flagged in both the Counts and Complexities summaries as being

incomplete, even though the missing data may not involve one summary or
the other.

The Project Global Summary presents the user with a summary
overview of the entire ASAP database. For many of the counts and

measures mentioned in the first two parts ASAP calculates the total for

all units, the average per unit, and the maximum for any one unit.

These values are displayed in the column labelled "ALL UNITS." In some

cases, though, these values are not really as useful as they might be.

For example, the average cyclomatie complexity per unit is diluted when

specifications and instantiations are included in the calculations since

these units always have a cyclomatic complexity of zero. Therefore, in

the remaining seven columns ASAP breaks down these pan-database summary

values into individual summaries for package specifications, package

bodies, subprogram specifications, subprogram bodies, task bodies,

package instantiations, and subprogram instantiations (all the possible

kinds of compilation units.)

Finally, ASAP includes as part of the Project Global Summary a

count of the total usage of individual Ada language statements across
the entire database and computes the percentage of the total represented

by executable and declarative statements, respectively.

3.4 LIMITATIONS INHERENT IN THE METHOD

The foremost deficiency in the method of Ada source code analysis

employed by ASAP is, of course, that it has no awareness of separately

- 28 -

compiled units which maysupply the context of the unit being analyzed.
This shows up most clearly in the Halstead analysis, where mistakes in

classification of operands and operators will undoubtedly be made.

Function names declared in other units will almost invariably be

classified as operands, even though they should be operators, because
ASAP has no semantic information about the identifier and can not tell

from context (usually) whether the identifier is a function or array

reference. Fewer mistakes will be made when analyzing programs that

define their interfaces through parameters rather than accessing global

data. Even then, though, there are potential errors. Take, for

example, an analysis of a pickage body. If a reference is made to a

function name defined in the specification of the package before the

function body has been encountered, then ASAP will probably call it a

Halstead operand until it sees the declaration of the functions body,

after which it will call it a Halstead operator. Still, the problem is

not crippling to the Halstead analysis since, whether counted as operand

or operator, the identifier still adds a component to the complexity
measure.

This lack of separate compilation knowledge means that the tool

would not be useful in automatically calculating a complexity measure

that was based on, say, the total amount of visibility available to the

unit. ASAP can only say how many identifiers were used, not how many
unused ones are available. It is not possible for ASAP to calculate the

package visibility measures suggested by Gannon, Katz, and Basili
[Gannon, Katz, and Basili 86], for example.

Another analytical problem is the fact that ASAP has none of the

built-in knowledge about type checking, result profile checking, and the

myriad Ada scoping and visibility rules which is necessary to

disambiguate between references to one overloaded or homographic
identifier and its (apparently) identical counterpart. Implementation

of such capabilities would be an unreasonable goal for one person

working alone. The component access metric [Gannon, Katz, and Basili

86] is an example of a metric that is difficult to collect automatically

because of these deficiencies as well as the separate compilation

problem. However, ASAP could be of significant help in counting

component accesses manually.

The only reasonable way to make a tool like ASAP completely

satisfactory is to give it as much information as the Ada compiler has,

i.e. make a measurement tool that is an integral part of an Ada

compilation system. Most such systems maintain separate compilation

information by establishing some kind of Ada program library in which an
intermediate form of the code is stored. An ASAP-Iike tool with access

to this program library information would have much more information on

hand than ASAP can collect from parsing the source. Unfortunately, it

is probably up to the vendors of Ada compilation systems to supply such

tools since access to this information is generally not available to the

end-user directly and details of implementation are considered

proprietary.

- 29 -

CHAPTER4

USINGASAP

4.1 INSTALLINGASAP

To install the ASAPtool in a VMSenvironment:

0

0

create a DEC Ada program library;

compile all the compilation units comprising the ASAP source

code in the context of the program library (Appendix F lists

the compilation units in an order which will allow for a legal
compilation);

o link the units and create an executable with the command

$ACS LINK ASAP

o define a logical symbol for the executable image, such as
. - _ _ _

$ ASAP :== USER4:[ADATOOLS.ASAP]ASAP.EXE

NOTE

The full path name of the executable is required in the

definition of the symbol. The path name given above ks

just an example and will differ for each system.

4.2 ASAP INVOCATION AND COMMAND LINE ARGUMENTS

All interface between the user and ASAP is through the command line

arguments specified when ASAP is invoked. The command line format of

• i /

- 30 -

ASAPis designed to resemble that of a procedure call in the ASAP
language. The arguments to ASAPmaybe specified with either namedor
positional notation or both, but, as in the Ada language, it is illegal
to use a positional argument after a namedargument. Default arguments
maybe used {see below for default values), but all arguments after a
default argument must be in namednotation. The following are examples
of legal ASAPcommandline formats.

$ ASAP(SOURCE: >"LEX. ADA", OUTPUT: >"LEX.OUT", DATABASE: >"PROJ. DB");

$ ASAP ("LEX. ADA", OUTPUT=>"LEX.OUT", DATABASE= >"PROJ. DB");

$ ASAP ("LEX.ADA", "LEX.OUT", "PROJ.DB");

However, since this is a fairly cumbersome command syntax, most of these
delimiters are considered optional by ASAP, so that the following are

also legal commands:

$ ASAP (LEX.ADA, LEX.OUT, PROJ.DB);

$ ASAP (LEX.ADA,LEX.OUT,PROJ.DB)

$ ASAP LEX.ADA LEX.OUT PROJ.DB

All six eommands, assuming that the arguments are valid ones, accomplish

the same thing: the Ada source file LEX.ADA is analyzed, the reports

generated go to the file LEX.OUT, and data is stored in the ASAP
database file PROJ.DB. Either a comma or spaces may be used to delimit

command line elements. The user is required, though, to provide the ">"

delimiter between an argument name and its value and to enclose the

value of the DELETE parameter (see below) within double quotation marks.

An ASAP command line may contain up to five arguments. If ASAP is

invoked with no arguments then a help screen is displayed. Otherwise,

ASAP may be invoked as though it were an Ada procedure with the

following specification.

procedure ASAP (SOURCE ."in STRING .-'-""',
OUTPUT : in STRING "- """

o--

DATABASE : in STRING "- """
e--

REPORTS : in ReportsParmType := AllUnitReports;

DELETE : in STRING := "");

However, not all combinations of arguments make sense. Following is a

complete description of the command line arguments to ASAP.

The SOURCE argument specifies the name of a file containing

syntactically-correct Ada source code. Syntax errors in the source file

will cause an error message to be displayed and analysis to abort. The

SOURCE argument must be supplied in the absence of a DATABASE argument.

The user must have read privilege to the file. No analysis will take

place if this argument is null or if the REPORTS argument is "PROJECT."

-31 -

The OUTPUTargument specifies the nameof a file to contain the
reports generated by ASAP. If no file is specified, the reports are
sent to the standard output. The user must have write privilege to the
directory in which the file is to be written.

The DATABASEargument specifies the nameof an ASAPdatabase file.
Data from the current ASAPanalysis will be stored here. The file also
acts as the source of data for the Project Summary Report (if one is
requested) and as the target file for the DELETEoperation (if one is
requested.) The DATABASEargument must be supplied in the absence of a
SOURCEargument. The presence of this argument in conjunction with a
non-null SOURCEargument indicates that the user wishes the results of
the analysis to be stored. A messagewarning that the user is storing
an incomplete analysis will be issued if database storage is requested
and the REPORTSargument is neither "ALLREPORTS"or "ALLUNITREPORTS"
(the latter is the default.) It is an error to fail to specify the
database file when requesting a Project SummaryReport or a DELETE
operation. The user must have read privilege to the file to generate a

Project Summary Report, read and write privileges to Update the

database, and read, write, and delete privileges to delete an entry from

the database. No Project Summary Report will be written unless the

REPORTS argument is either "PROJECT" or "ALLREPORTS."

The REPORTS argument specifies which reports will be generated by

ASAP. The only values which may be specifled for this argument are:

ALLUNITREPORTS -- (the default value) all ASAP reports

except the Project Summary Report;

ALLREPORTS -- all ASAP reports;
HALSTEAD -- only the Halstead Measures Report;
NOHALSTEAD

IDSUM

NOIDSUM

MCCABE

NOMCCABE

STMT

NOSTMT

UNITSUM

NOUNITSUM

PROJECT

-- all unit reports except the Halstead
- " Measures Report; i_ _ _: _ _ _ _ _. _

-- only the Identifier Summary Report;

-- all unit reports except the Identifier Summary

Report;

-- only the McCabe Complexity Report;

-- all unit reports except the McCabe Complexity

Report;

-- only the Statement Summary Report;

-- all unit reports except the Statement Summary

Report_

-- only the Unit Content Summary Report;

-- all unit reports except the Unit Content Summary

Report;

-- only the Project S_ry Report.

The DELETE argument specifies the name and descriptor of a unit to

be deleted from the specified DATABASE. The name and descriptor must be

inside double quotes and appear exactly as they do in the Project

Summary Report (including case and spacing.) It is an error to specify a

- 32 -

non-null value for this argument when no DATABASEargument has been
specified. Read, write, and delete privileges to the database file are
required.

It is possible to specify update, reporting, and deletion
operations on a database with a single command. In that event the order
in which these operations would occur is deletion, update, and
reporting.

- 33 -

CHAPTER 5

OPERATIONAL CONSIDERATIONS

5.1 PORTABILITY

As stated earlier, one of the goals considered during the

implementation of ASAP was to minimize system dependencies and isolate

those dependencies that were unavoidable. This goal has been largely

realized in the final product.

The implementation of ASAP databases is definitely VMS-dependent.

The database files are created and manipulated by calls to subprograms

in the DEC Ada predefined package Indexed_IO. The file services

provided by the standard predefined I/O packages Direct IO and

Sequential_IO are not sufficient to implement a truly usabTe ASAP

database. However, the dependency is completely transparent outside the

body of the package DatabasePkg. The internal database file object is

not visible outside DatabasePkg and so all file manipulations are

handled through procedures specified in the package specification.

Making ASAP databases work on another system would require only

re-lmplementatlon of the body of DatabasePkg.

Aside from the database implementation, ASAP is almost completely

host-independent. Two non-standard predefined package instantiatlons

and one non-standard predefined generic package are used, but they are

easily repia6ed]One is Float_Text_IO, which is simply a predefined

instantlation of Text IO.Float IO. Floit Math Lib, an instantiation of

the DEC-dependent package Math_Lib, is used to compute the base two

logarithms needed for the calcuiati6n of some Hals_ead measures. Such

mathematics functions are common on all systems so no difficulty in

replacing this function is anticipated. The effect of all three of

these packages is limited to the body of the package ASAP_Reports.

ASAP includes all predefined pragma and attribute identifier names

as part of the enumerated type HalsteadOperators in the package

ASAP Declarations (see Appendix C.) Therefore, there are some

:;2

- 34 -

DEC-_ependent names included in the enumeration. All such names are

flagged, however, and can easily be removed and replaced with

host-dependent pragma and attribute identifiers for the new host system.

New names can also be added to accommodate potential new predefined
identifiers in future releases of DEC Ada.

A few other system dependencies are isolated in the reused packages

Host_Dependencies and VMS_Lib. Host_Dependencies contains constant

system-dependent values for tabbing, source code maximum length and

maximum line length. VMS Lib contains a function for returning the

command line arguments from the environment and a procedure for setting

the default device for error message output.

One potential portability problem is that the parse tables used by

ASAP are quite large and some compilers apparently have trouble

digesting them even though they contain no non-standard Ada references.

Also, the ASAP executable image is large (about 425K bytes when compiled
and linked with DEC Ada) and the tool allocates large amounts of space

while parsing code, so ASAP requires a fairly large amount of memory to

run efficiently.

5.2 EXPANDABILITY AND MAINTENANCE

It should be possible to add functionality to ASAP without much

difficulty so long as the expanded functionality can be accommodated

within the existing ASAP framework, i.e. does not involve changing the

Ada grammar used to parse the source code. If a new Ada grammar,

different from that currently used, were required, then the parse tables

would have to be regenerated using the NYU LALR Parser Generator.

Addition of new production rules would probably not cause many problems,

but if the new grammar changed existing productions where actions occur

the problems could potentially require extensive reprogramming. This

could be a problem if future language definition standards alter

significantly the syntactic aspects of the language.

ASAP has been extensively, but not exhaustively, tested. The

domain of all possible combinations of Ada programming language

constructs does not lend itself to exhaustive testing, to say the least.

It would be surprising if there weren't a few bugs left lurking in ASAP.

It is a fairly large piece of software and includes reused code for

which no testing history is known, although it appears to be stable and

reliable for the most part. In the new portions of the code the author

has attempted to document well, modularize ASAP functions, use lengthy,

meaningful identifier names, and in general avoid programming tricks

that work efficiently but are difficult to understand. It is hoped that
these efforts will ease the maintenance burden.

- 35 -

f_

CHAPTER 6

SUMMARY AND CONCLUSION

6.1 SUMMARY

In a preceding chapter of this document we have seen that static

source code analyzers have proven useful to researchers in numerous

studies of software quality, software maintenance, software errors, and

programmer effort in relation to software size and complexity. The

original goals of the ASAP implementation effort have been stated and
evidence presented that these goals were largely achieved. The data

collection methods used by ASAP as well as the content and format of its

various reports have been described in detail. ASAP's facilities for

storage in project database files of selected portions of the data
collected has been described and the usefulness of such files explained.

The limitations {including lack of support for separate compilation) of

the data collection method used by ASAP have been discussed.

Instruction in the installation and useof the ASAP tQo_:=in :a VAX/VMS

environment has been provided.:_inaliy_, iong-term consld_ra_ions such _

as the portability, modifiability, and expandabiiity of the tool have
been considered.

6.2 CONCLUSION

ASAP partially fills a need for tools to aid in further software

engineering research efforts directed at the Ada environment. Because

of its lack of knowledge about visibility from separate compilation

units, ASAP is not the ideal static source code analyzer for Ada.

However, it still provides valuable information about Ada compilation

units and, through its project-oriented database files, about

collections of Ada compilation units. There is room for further work on

ASAP. It might be useful to extend ASAP for the purpose of calculating

additional complexity metrics appearing in the literature. Also, some
additional work on the implementation of symbol lookup in ASAP could

- 36 -

probably improve its execution time when analyzing large compilation

units with lots of external visibility.

37

°

APPENDIX A

ADA STATEMENT TYPES COUNTED

The following Ada enumerated type declaration enumerates all the

kinds of Ada statements counted by ASAP. The meaning of most of these

names is obvious and needs no further comment. In the remaining cases

clarification is supplied.

type StatementKind is

(Abort_Stmt,

Accept_Stmt,
Assign,

--I EXECUTABLE STATEMENTS

_m

m_

Assign refers only to actual assignment

statements. Initialization assignments
are not counted as separate statements.
The number of initializations can be

determined by examining the value associated

with the HalsteadOperator enumeral

assign_init.

Call,

Code_Stmt,

Case Stmt,

Delay_Stmt,

Entry_Call,

Exit_Stmt,

Goto_Stmt,

If_Stmt,

Loop_Basic,

Loop_For,

Loop_While,

Null_Stmt,

Raise_Stmt,
Return Stmt,

Select_Stmt,

--l Call is the count of subprogram calls only.

--I Entry Call is the count of task entry calls.

--l Loops with no iteration condition

- 38 -

Access_Type_Decl,
ArrayTypeDecl,
Block,
ComponentDecl,

DerivedTypeDecl,
EntryDecl,
EnumTypeDecl,
Exception_Decl,
FunctionBody,
FunctionSpec,
FunctionStub,
GenFunction_Instant,

--[DECLARATIVESTATEMENTS

--[Declaration of a record
--I component.

--I An instantiation of a generic
--I function.

GenFunction ParameterDecl, --I A declaration of a formal
--l function parameter to a generic
--l specification.

GenFunctionSpec,
GenPackage__Instant,

GenPackageSpec,
GenParameter_Decl,

--i An instantiation of a generic

--[package.

--[A declaration of a formal

--[object parameter to a generic

,-[specification.

Gen Procedure Instant, --[An instantiation of a generic

--l procedure.

Gen Procedure Parameter Decl,--i A declaration of a formal

--[procedure parameter to a

--[generic specification.

GenProcedure_Spec,

GenTypeParameter_Decl,

IntTypeDecl,

IncompleteTypeDecl,
Number Decl,

Object Decl,

PackageBody,

PackageSpec,

Package_Stub,

Pragma_Stmt,

PrivateDecl,

ProcedureBody,

ProcedureSpec,
Procedure Stub,

RealType--Deci,

RecordTypeDecl,

--[A declaration of a formal

--I type parameter to a

--I generic specification.

--[Named number declaration.

--[Private or limited private

--i type declaration.

- 39 -

RenamingDecl,

Representation,

Subtype_Deel,

TaskBody,

Task__Spee,

Task_Stub,

Use_Clause,

With Clause);

--I Representation clause.

r

•i/

- 40 -

APPENDIX B

ASAP IDENTIFIER CLASSIFICATIONS

ASAP uses the following Ada enumerated type to classify identifiers

declared (or otherwise given semantic meaning) within a compilation
unit. The "additional information" field associated with each semantic

meaning of an identifier contains brief supplemental data whose nature

varies with the classification assigned. The comments below clarify the

meaning of the non-obvlous classifications and describe the nature of

the "additional information" which may be associated with each.

type SymbolClassType is

-- CLASSIFICATIONS CONSIDERED

-- HALSTEAD OPERAND

(component, --I Record component name. Additional information

--I field is the type or subtype name.

constnt, --I A constant. Additional information field is

--I the type or subtype name, or "ANONYMOUS ARRAY"
--I or "NAMED NUMBER."

discrimnt, --{ A discrlminant. Additional information field is

--{ the type or subtype name.

enum_l it, --I An enumeration literal. Additional information

--I field is the name of the type to which the

--I literal belongs.

except, --I Exception. No additional information.

formal, --I Formal parameter. Additional information field

--I is the type or subtype name.

gen_formal, --I Generic formal parameter. Additional

-41 -

--I information field is the type or subtype name.

gen_pkg, --I Generic package. Additional information is
--I "SPEC".

label, --I Additional information is either empty,

--I "OF LOOP", or "OF BLOCK".

lib_unit, --I Additional information is "WITHED".

loop_vat, --I A.for-loop control variable. No additional
--I information.

object, --I Additional information is either the type or

--I subtype or "ANONYMOUS ARRAY".

pkg, --I Additional information is either "SPEC",

--I "BODY", "STUB", or "INSTANTIATION".

renam_excp, --I Renames an exception. Additional information

--] gives the expanded name renamed.

renam_obJ, --I Renames an object. Additional information

--I gives the expanded name renamed.

renam_pkg, --I Renames a package. Additional information

--I gives the expanded name renamed.

subtype, --I Additional information is the type or subtype
--I referenced in the declaration (no constraints

--I are included).

taskname, --I Additional information is either "SPEC",

--I "TYPE", "BODY", "STUB", or "INSTANTIATION".

typename,
wm

wm

_m

w--

mo

A user-defined type. Additional information is
either "ENUMERATION", "INCOMPLETE", "INTEGER",

"REAL", "RECORD", "PRIVATE", "LIMITED PRIVATE",

"ARRAY OF <(sub)type name>", "DERIVED

<(sub)type name>", "ACCESS <(sub)type name>",

"GENERIC DISCRETE", "GENERIC INTEGER",

"GENERIC REAL", "GENERIC LIMITED PRIVATE",

"GENERIC PRIVATE", "GENERIC ARRAY OF

<(sub)type name>", or "GENERIC ACCESS

<(sub) type name >".

-- CLASSIFICATIONS CONSIDERED

-- HALSTEAD OPERATOR

entryname, --I No additional informatioh.

- 42 -

fcn, --I Additional information is either "SPEC",

--i "BODY", "STUB", "INSTANTIATION", or
--i "GENERIC FORMAL".

gen_.fcn, --i Generic function specification. Additional
--i information is "SPEC".

gen_proc, --i Generic procedure specification.

--i Additional information is "SPEC".

proc, --] Additional information is either "SPEC",

--["BODY", "STUB", "INSTANTIATION", or
--i "GENERIC FORMAL".

renam fcn, --i Renames a function. Additional information

--J gives the expanded name renamed.

renam_proc); --J Renames a procedure. Additional information

--i gives the expanded name renamed.

- 43 -

APPENDIXC

ASAP'SHALSTEADOPERATORSANDOPERANDS

Identifiers are counted by ASAP as either Halstead operands or
Halstead operators. A declared identifier is counted as an operator if
it has one of the final seven classifications described in Appendix B;
otherwise it is counted as an operand. An undeclared identifier is
considered to be an operand by default unless ASAP can tell from the
context of the reference that it should be counted as an operator.

All string, character, and numeric literals are counted as Halstead

operands, except for string literals declared as overloaded operators or
character literals declared as enumeration type literals.

The following Ada enumerated type enumerates the remaining Halstead

operators counted by ASAP. They are divided into four groups:

I. reserved words or reserved word combinations;

2. delimiters;

3. predefined pragma names;

4. predefined attribute names.

The set of pragma names and attribute names counted is

implementation-dependent (in particular, DEC Ada-dependent), but may be

altered to conform to other implementations.

Most of the following names have obvious meaning. The ones that do
not are described below.

type HalsteadOperator is

--J RESERVED WORDS OR RESERVED WORD COMBINATIONS

- 44 -

(aborttoken,
abs token,
accept token,
access_token,

all_token,

and token,

and_then,

array_of,

at_token,

begin__end,

ease_structure,

case_variant,

constant_token,

declare_token,

delay_token,
delta token,

digits_token,

do_token,

else token,
elsi_ token,

entry_token,

exception_token,

exception_decl,

exittoken,

for_iterate,

for_use,

function_is,

--I "AND" when used as a Boolean operator.

--I Combination "AND THEN" when used as

--I short-circuit operators.

--I Reserved words "ARRAY OF".

--I "BEGIN" - "END" pair counted as one

--I operator.

--i The combination of "CASE", "IS" "END"
--i and "CASE" when used as a case

--I statement is counted as one operator.

--[Same as preceding except used in a

--i variant record structure.

--i "EXCEPTION" when used as the beginning

--{ of an exception handler.

--I "EXCEPTION" when used in an exception
--I declaration.

--i "FOR" when used in a loop condition.

--i Combination of "FOR" and "USE" in a

--I representation clause.

--] Combination of "FUNCTION" and "IS" in

--i a function body, stub, or
--f instantiation.

- 45 -

function_spec,

generie__token,
goto_token,

if_structure,

in_mode,

inout_mode,

inset,

limited_token,

loop_structure,

mod token,

new_allocate,

new_derived,

new_gen_fen,

new_gen_pkg,

new__gen__proc,

not in,

not_token,

null_token,

or_else,

or select,

or_token,

others_exception,

--I "FUNCTION" in a function specification.

--[Combination of "IF", "THEN", "END", and

--["IF" counted as one operator.

--I "IN" when used as a parameter mode.

--[Combination of "IN" and "OUT" counted

--i as one operator.

--i "IN" when used as a set operator.

--[Combination of "LOOP" "END" and

--i "LOOP" counted as one operator.

--["NEW" when used as an allocator.

--["NEW" when used as type deriver.

--["NEW" when used as function

--i instantiator.

--["NEW" when used as package

--[instantiator.

--["NEW" when used as procedure
--i instantiator.

--[Combination of "NOT" and "IN" counted

--I as one operator.

--["NOT" when used as a Boolean operator.

--i Combination "OR ELSE" counted

--[as one short-circuit operator.

--I "OR" when used as a Select statement

--I alternative.

--I "OR" when used as a Boolean operator.

--["OTHERS" when in an exception handler.

- 46 -

otherstoken,

out_dde,

packagebody,

package_renames,

package_spec,

pragmatoken,

prlvatedecl,

private_section,

procedure_is,

procedure_spec,

raise token,

range_token,

recordstructure,

rem_token,

renames_token,

returntoken,

reverse_token,

select_structure,

separate_token,

subtype_is,

taskbody,

task_spec,

--l "OTHERS" in all other cases.

"BODY" "IS"--i Combination of "PACKAGE", , ,

--1 and "END" counted as one operator.

--I "PACKAGE" when used in a Renames

--I statement.

--I Combination of "PACKAGE" and "IS"

--I counted as one operator.

--i "PRIVATE" when used in a type

_-I declaration.

-_["PRIVATE" when used to denote the

--I beginning of a private section.

-ui Combination of "PROCEDURE" and "IS"

--i in a procedure body, stub, or

--i ins_antiation.

"-i "PROCEDURE" in a procedure

--i specification.

--i Combination of "RECORD", "END", and

--i "RECORD" counted as one operator.

"END" and--l Combination of "SELECT",

--I "SELECT" counted as one operator.

--I Combination of "SUBTYPE" and "IS"

--i counted as one operator.

--I Combination of "TASK", "BODY, and

--i "IS" in a task body or stub.

i Combination of "TASK" "IS" and "END"

- 47 -

task_type,

terminatetoken,

type_incomplete,

type_is,

use_token,

when in case,

when in exception,

when_in_exit,

when in seleet,

when_in_variant,

while_token,

with_gen,

withtoken,

xor token,

--I DELIMITERS

ampersand,

arrow,

assign,

assign_init,

bar,

box,

--I in a task specification.

t

--i Combination of "TASK", "TYPE", "IS",

--I and "END" in a task type specification.

--I "TYPE" when used in an incomplete

--I type declaration.

--i Combination of "TYPE" and "IS" in any

--I other type declaration counted as one

--I operator.

--I "WHEN" when used in a case statement.

--I "WHEN" when used in an exception

--I handler.

--I "WHEN" when used in an exit statement.

--I "WHEN" when used in a select statement.

--I "WHEN" when used in a variant record

--I structure.

--I "WITH" when used in a generic formal

--I subprogram deelaration_

--i "WITH" when used in a With clause.

--[Named association operator ":>".

--I "::" in an assignment statement.

--I ":=" in a declaration.

--I "I",

--I "< >".
"[._

- 48 -

colon,

colon_mode,

colon_named,

colon_renames,

comma,

divide,

dot,

dotdot,

equal,

exponent,

greater,

greater_equal,

less,

less_equal,

label,

minus,

mlnus_unary,

mult,

not_equal,

paten_aggregate,

paren_discrlm,

paren_expr,

paren_gen,

paren_index,

paren_list,

paren_param,

paten_range,

paren_subunit,

--i ":" in a normal declaration.

--I ":" in a parameter specification.

--[":" after a label.

--I ":" in a renaming declaration.

--i Range operator ".."

--I Label indicators "<< >>"

--i Parentheses around an aggregate value.

--i Parentheses around a discriminant

--i specification list.

--{ Parentheses around an expression.

--i Parentheses around a generic actual

--I parameter association list.

--I Parentheses around an index constraint

--i in a type, subtype, or object
--I declaration.

--I Parentheses around an association list.

--I Parentheses around a formal parameter

--I specification list.

--i Parentheses around a range in an entry

--i declaration.

--I Parentheses around a parent unit name

- 49 -

--I in a SEPARATEclause.

plus,
plus_unary,

quote_attr, --l Attribute operator "'"

quote_qual, --i Qualification operator "'"

semi,

--I PRAGMAS

ast_entry,
controlled,
elaborate,
exportexception,
exportfunction,
export object,
export_procedure,
importexception,
import function,
import object,
importprocedure,
import_valued_procedure,
inline,
interface,
list,
long_float,
memorysize,
optimize,

pack,

page,
priority,

psect_obJect,
shared,

storage_unit,

suppress,

suppressall,

systemname,

task_storage,

timeslice,

title,

volatile,

--i DEC-dependent

mu

_m

I--

_w

DEC-dependent

DEC-dependent

DEC-dependent

DEC-dependent

DEC-dependent

DEC-dependent

DEC-dependent

DEC-dependent

DEC-dependent

--i DEC-dependent

--i DEC-dependent

--I DEC-dependent

-,I DEC-dependent
''[DEC-dependent

--i DEC-dependent

--i DEC-dependent

--I ATTRIBUTES

address,

aft,

ast_entry attr,

base,

--i DEC-dependent

- 50 -

bit,

callable,

constrained,

count,

delta attr,

digits_attr,

emax,

epsilon,

first,

first_bit,

fore,

image,

large,

last,

last bit,

length,

machine_emax,

machine_emin,

machine_mantissa,

machine_overflows,

machine__radix,

machine_rounds,

machine_size,

mantissa,

null_parameter,

pos,

position,

pred,

range_attr,

safe emax,

safe_large,

safe small,

size,

small,

storage_size,

suec,

terminated,

type class,

val,

value,

width);

--I DEC-dependent

--l DEC-dependent

--I DEC-dependent

--I DEC-dependent

-51 -

r

APPENDIX D

SAMPLE ASAP REPORTS

This appendix contains a sample of each of the six kinds of reports

which can be generated by ASAP.

- 52 -

I

U1
CO

!

-,4 1,3 I_ t,,3 O1

! nn

CD _ .Ib (31 O C) O O O O) O I C) C:

i I,n I_
I"11
:Z)

I Z
_ I OO

I_ .I_ .lb. U1 G) _ I CJ'I1
I m
I (./I

"o "o "o "ID "o "ID "_3 _D "1_ "ID

In In I In I In I In In I
"h 0 0 0 0 0 0 0 0 0 0
O C: C r" r C t- C C C t-

O Iz_ I_a I o I I I I_a I_o I_o I
O 0 0 0 0 0 0 0 0 0

0 _ _" C C C C C C C C

• • • o 0 •> > _ b ,-,_ b -,-T -,-

0 0 • • • rt- _ ,-_ ,'+
< r" _ _ _ (_ _ _ _,

. O. ,+ Z Z 0 ,'_ 0 0 0

r_ "ID _D CL _ 0 0 0

C 0 C1 0 0

D _ C) C t-
,+ • 0 D D

D

0

C_
0
C

D

O< 0

-or- "o
r--o _
m_

_ -,4

oo

¢')¢_
o _

_ c _

> _-_

_O0

Z • •

r_ 0 _

0._
,<

0
"1

o

N

III
O.

L'O
o o
CLD
@

Vl (_
I'-' >, _

O_U

E_
®o

(_, 4.,
ff

o
u

I
¢,1

to

m c

_ E

_ o

® _
_ Eo
a _

I"

2:

0
L)

tu
n
>.
I--

I--
Z
I11
=E

t-
<
F-
V}

Ii II
II II
Ii iI
II II
II II II
II II II II
ii II iI II
II II II II II
II II II II II
II II II II II II II II II

Q
_0

JOm
0 I

oi_I _ _ <

lu<_Ul__J_JW_
_J IJ_UO_

_z
Z_

Z_

O_
U

pJ_

IJJJ

I000

I

_r

!

!

(n

I

Z
(/)

-I

A Z]_

Z --I

Z "0

m _ |
v m o

n

_ "1 m

r" _"

m _ __i.n o
:3

_ m
Q.

:3 r-
c _

3 e--
Cr V_
• m

o

rl.

m

r_

o
3

m
Z

-I

o _.rp

ZJ 1 3_
f,_ _4ID tD

o ol
Z "1 r-"

"1 r_

n

m
2:
-I -I _ (/)

-I1 I/t r) O"

ill III "1

z

m • °
o

000

=E
H

-I

t-

C:

U')
m

(.n

-I'0_

m_c-

0 0

3

0--0

(/I r) _r

'1 o
_DO 0.

"1

,+

Ooo

0 00"

r) -I _ o

m -1 n
o

m
z

t-)
o

z
-_ o_

m
::o
111 m"n

o x o
o -1

- o
r- _

t")

o "1

:T _)n

Q

E cl
::)

....

o(D

C'<

CT_
rt-(_

O

Od

"1
t_
CL

,..o

OO

m _3 _0

_- OOUI

_ (") "-h -k 0
0 E

(,n _-(_ r-

C: _t 3

oo

), --I _)"
< 0 I_ OL

"11]1 _

ZU_Z_
_ ,.+ t_ @

:) 3
_DO_D

0"0 0

"0 :T'O
r_- rk

:_o_ co
-- 01 _, (Z)

0

"0 m

,-I" 0

0 '_

e-

_ ',4

I
0
r

0¢')
t- 0

r'

0 ID

_ 0

q •

r"

c"

dl
q.

@
"13

Z

Q
.i

IX
,(
.J

L_
UJ
r_

UJ
O.

0
U

0

@

re

_- _ 0

el / ii

1,4

_D J

'_ L 0

e

"0 re
_ 0

0 >-
.0 b--

0

U

_ J

@ U
C

0

a: I

W

0

U
I

..

°

® _. _-Z I

0 0 !

4_

C
3

0

43

0

0
U
L
0

3 3 E 3 3U'_.

0 0 _0 0"00
U U 0 L) 0 _-_ "0
L I_ _1_(.,) L. L L _

0 0 _0000_

L L :)_@L L. LL

(3. O.UJ.O O.O.O.O.'r :3:3 3

O O _ "_ _ O OOO _,-'
"13 "0 C ® W'D'_'_'D C O O o

-,'D • _ _ _ • o o 0
I I_-_,¢ lr I I I ,l_ _--

.......... _ (__ c._

L L L

0 0 0

L C L L

O. _ 0.0._0. O. 0.0.O >. _. m.O >.)-O

"O C _- I-- I-- "13 I--ii--i'0® I I I_

E.; o

C _I

E o

u

_ 5

N 0._

•-_ ®L

•._ C 0
0

elLL L LL_ {300

r_ 0 r_ r_ _ r_ 0 0 r_ .00 0 l-- l- I1-

O O O O O O O O O O O O O 0. a. a. ,'_ o. s. C_ O ,-, ,..., _, L

_LL
I-- JJJJJJJJJ ZZZ

O O L90 O O O O O ") O E _ r,,' _* c," tl' E E r," O .'n _1 m

n" n" "_ n" :," ,Y n" n" _X " n" O O O O O O O O O ,'," H ,.-, ,-, 0_

0

0

L _
0 0

L _ _

e" 0"10 "_
_ ¢" "00U r-

, _ 0.@'D O O _l

_ 0 _-_ C-_ _ _ -_V)

13_ C Z +.' 0 0 0 Z

---- --LU Ic_ e(_

_r_r_I_- "If'l" _'Z OO

NNNNNNL0 N (,0 N N e_. (D NN

L

DO

013
E

U

UQ.
E x

L

II- 0

L _ _

_ L
• ._ 0

@ _.- L II

C ._.C "(3
C_

ELI _
®o Io L _0 "G

C

L

C_
0

C
0

L

I1_ U I,.. L
c _ z

ECC I '_" _-0 _ U LJ I_ I_ eN

-., 'D _-- L m _ I L _- I I-J

>, C C0_

o ._._ "_

1

I

!

01

",4

!

-4
o

_D

o

_D

7

n

0

o

0
0

0

f-

In

ID
n

"3
ID

O.

m 0"0 I_ 7c (2 10 "0 m,+

"0 D 3" 7 _m

3" 0 ,4"0

"I 3""}

0

0
C:
Z

(.-)o _
m
z

--4

_7 0

0
3 ,4-
D m

0

r-

_ M
o

.,

I

0

l'-
"1

I

0
t"
14,

I'1

ID

0

O.

0

t" _

7O
0

"1

_O

@

n

0

O.
@

I-.-_
er®

OL.

U.I @

@
eLX

@

4-i
Ul

"r

"0
0

@

U

¢'1

W

C

g
0
¢,¢

I

0

(.)
I

,o

.io

_ C

_ C

_ °

® "_.

0
e_ C.)

Q

Z

W

0

0
U.I

4(
J
U

.I

I-

Ll.
0

LU
U

Z
UJ

O:

':::)
L.)
u
0

W
H
ii

i-4
I-

Z
U3
_3

J

J

_IC

_Oul

NNI_

@

@

"0
L

0

C

LEL

ZU

tO (O (0

® _;
C

UJ

0

I z

0 O0 0

I • I z
.COax u.

,¢ _ 0 I-- Cm

¢,4 _) N ¢_1)-
j

J

z

n_
LLJ
I-

X
LU

/ L
0 0

L
I.ILr

I_ ®

_ _11 (_ 0 Iv)

I_ I_Z t- _]:_

m 0 _ _10.O. _ m
_UT_EO_

C
0

• Z 0 _¢_

_ E_

r

t._. c

C: C_ C I=Z

ILCL +_
L _ ,_,' _

L

U_

CL_

LE@

_CU

000

rct-
@@@
LLL

@@@
_1- 4- 4-

--hN--N--NN "'||
OLLL

L

L

I

O0
LO

I

!

I

C

m
09

r-
E
m

_C Om
Z_

Z

C_O0;O
o_cr;_
-Im>OO

mzrz_

I I r I_=

-4,-, o

=--I m

o)

m

I m Z

O

m

--t
m

0,

E: 0 ,-_ _1_
6_--I Z m

m TI

--I _00 Z

ou_ol

:_1 mm
mm z
zx o

m
10
.-I

_mzm
I_oX

mn_n

iz _i m
_OH
zm_

II mo
m_zz

×ol

m_ o

m

Z

_'nO Z _
_.-I ;10 C "n

-t o r-I
-r t_ r- t,,)

I nil --I

OCO e-

rn rrl I_1 --I
z r-

ZJH :_0

m

m

<
m
o

o

o

m
X

m

z

r-

r"

o

m
z
M

"11

m

0.

N)

-1

c

I
r-

3
ID

TO

-o-r

M

o
7

o.o

(._'o
o

o

o

,,_ -r >

_<

_0

C
D

_OZ

C'J _

O

E

m

P

m
o

]_ m
13. Z
O. -4

-4o -_

r- ..

0
t_, 0

"7 _

m _"

m c

_ J

r_ _
;zl _

or

0.

"r

0

_m

¢t.

ID

.-4

o

o

co

_0

o

CL

o_
¢/1

l--m
e,-®

OL
r, D
WIO

q{.l
@

"0

0
D

,¢

U

e_

@

4o

0
e¢

0

I

CO C

_ °
0 *.P

® _.
_ o

Q U

C C

Jr
0

Q

x C

cZ Z >(3>,,,>

" ,'=_ II I| n'.
' _I' _k lJ II II II _ II J| n

C CZZ ¢" ¢" CZ_-> -JJ_l'_

O_NN_N_

.0.0,..0

N 0

DZ 0 D
OD Z

Z_ _0 _ 0

_0_0_ m

X_O0 Z_2_>_

&&_JJ_J_>JJ OOO

00__0_

3)JJZZ_ZE3_H_

ZZOOOOOE_O_

I

C_

_D

!

I

O_

;

N
O_

0.

_N_O0 _ _ N _ _ _ _ _ _ _N_N_ _0_
• • • .0..0.

0 N 0 _0000_000_ 00_0

N

00..
w_ _ o o _ g g _dooo-ooo_ oo_o_1 NOON--O _ _ 0

I

,4 _ _ _ _ d J d _ CdgJ_g_dd J66Z

>

II0 O--_OOW 0 0 -- 0 0 0 0 0 0 O_--NO------O 000 _

'_ 6 o 6 6 6 6 6 666666666d dd66II_ O00000 0 0

I Z
I l.IJ

I I I-

I,UO
U') _ 0,.
UJ::)
£ZJ_

:DO _"
V)>O

410
i,i i n-
"_ I O.

L < I I,_
U.I "I" n,

0:3 -JZ

m "rJo
G_I OC I_ I '_"
I-- @ 1

n_)_.- I

4 E uJ_
'1- o }'-Z

n ,,,,-_ I ,Y
0 JO..

L _0

Or,.

}-Z
I n."
I _-

0

I e.,
! I-

1.1.1,'I
:DO

0

0 ZZ

O, I 0
4
'./) I/.I 0 .J

< _:0 J n

•.0 >- 0

la

n

g

2

N 4

0 W

• . L Z

t

I

Z (3 _Z
H > Z_

--I O rrl > _ 0:_ (7 F _/I m --I
m X I-0"1 F O _ On m r_ r > E C(_

CO OEE) _C_0 rc(o mzcEi OCCi Zc(o c_ c(o H N

C C O c Z c m C C O C _
:3 O :3 '7 :3 -I :3 _E 3 3 :3 m :3

i'$ i't- F l't" _ l't" i-I <- _ _ l"i' l"t" I't"

r C _I

r- "1 -
,<

_ O

m
Z "_
•--I "i

o

ID

I11

r-

c _

_ -.-t

O3

7O

05

7O
m
C)

b_

0

0

rn
o b_

"0

-.-t

'7
-..(

C
III

in
-.t

Z

70

_O

(4

@
O_

0.

I--
Z

Z

I'-
Z

I-

Z

W

7,
0

I-

O0

_ 000 000 000 000 O0 O0 000 _
O0 _N_
O0

O0

_o

0
m

n-
¢%

m
b_

O

L L

O_ Ul

000 000 000 000 000 O0 O0 000 000
O0

O0
O0

do

_UU _
@ •

L L _.

I

I

0

en

.J

; J

4_

0

aa

U

L I--
_- Z

td

_0 _ UJ

O4 m

_ _- <

• E m

3 -J

_0 _

U

Z

0 C E C
3 _ D

Z ®EO mE
0 _ _3

(13

C _J C
3 _ 3

I I

_ _ ,,

X

E _ C C 0 C _ C

eEE eE_ eE_®E_eEu cE_w mE

I

O_
in

I

"I0

"Io "I0 '10 _o
_0 _0 _o 0
fn fn m

CCO OCQO 0£¢0 OC_ 0
3m Bm Bm Bm r-

r- c D

o _

I-- "1 ,.

0

rn 0

C _" 0

m)_ oo

Ill
Z "0

-4 n
o

o

w_

o"

f_

l-

c f_

b

"I0

;m

t_

m
t_

"0"0
"I0 "3 'I

00

0 e_,*_

C --_0

• , _ _0

000 000 _ _7
000 000 _ _
000 000

000 000 000 000

0

_0 _0_ _ _0_

000 000

ooo o_b
OO0 000

000 000

obo bbb ._

000 0_0

000 000
000 000
00_ 000
000 000 000 000

fa_

0
0

m

--4

-4

c

--t

CD

@
(_
gl

a.

J
(J

/l#j
I- ZO
Z_< I

I- ql[(,0 uJ
{/I _- Z I-
z(4 H uJ

z I:E m
:3--J

_ ZIMI_ _ UJl-U
I--- OOUJ_<{ JuJ(._uluJ

I-I-UI -x. I-- _I=,-_OS.(Ja. LU la(J It'-<"' l"'v_O"' l>-W
:E:EW:I(4 "'ZU_(JWO l l'_O_

I-I--<F- i OlOZUOa._ lUJUJ:3ZO<
1 I I I_J_'>l-u-a-a-I--U-I<<'"=E IU

_ _ I-- a. J u.IU = u zlzlzl "_"> u < _ wl_OJJOI"ZZ 1 mU_OZ
(,_ _{ X 03 libl j Z 3 t_l i_ ILl IJJ 3 _I[E E UJ el{ Vi

i_ _1- (0 (0 i_ 0 i_ 0 i_ 0 o oi 0 io I_. _ _- o4 o _

I,..- (n
r,,>,
OL--

,_uu
@@

L L.

J _ I__0_ I_

I_U.b_ I_O_OZEOJ_ I_ I_b

UO_ IO_UZZZZUU<OUm_

O00_O_O_O000N_O_O

I

_0
_0

i

0

o

.,

CB

<
(4

III
.0
tl
4J

®

2

<

k

3
m

I--

0
e¢
Q.

W
"1"

0

t--
z
uJ
=E

i-- _u
Z _-
iii <_
=E t-

:E u_
0

...I
<{ uJ

(_
0 <

APPENDIX E

ADA GRAMMAR USED BY ASAP

This appendix enumerates the production rules of the LALR(1) Ada grammar

used by ASAP to parse the source code.

ml

u_

lw

u_

_m

wD

m_

ii

mu

wt

mu

m_

uq

mm

I pragma ::: PRAGMA identifier (general component associations)

2 pragma ::: PRAGMA identifier ;

3 basic_declaration ::= type_declaration

4 basic_declaration ::= subtype_declaration

5 basic_declaration ::= subprogram_declaration

6 basic declaration ::: package declaration

7 baslc_declaration ::= task_specification

8 basic__declaration ::: generic_specification

9 basic_declaration ::= generic_instantiation

10 basic_declaration ::: renaming_declaration

11 basic_colon_declaration ::= object_declaration

12 basic_colon_declaration ::: number_declaration

13 basic colon_declaration ::: exception_declaration

14 basic colon_declaration ::: renaming_colon_declaration

15 object_declaration ::: identifier_list : subtype_indication

- 67 -

m_

lw

lw

mw

ml

m_

mm

wu

mw

lw

wl

tw

t_

im

_m

tt

g_

tt

it

li

m_

mm

tt

it

_m

mt

it

_m

Im

t_

wt

_t

it

_t

II

it

_m

Ii

tt

mt

mu

lw

it

[::expression] ;

16 object declaration ::= identifier list : CONSTANT

subtype_indication [:=expression] ;

17 object declaration ::= identifier list :
constrained_array_definition [:=e_pression] ;

18 object_declaration ::= identifier list : CONSTANT
constrained_array_definition [:=expression} ;

19 number declaration ::= identifier_list : CONSTANT ::

expression ;

20 identifier list ::: identifier [,identifier}

21 type declaration ::= full_type declaration

22 type_declaration ::: incomplete_type_declaration

23 type_declaration ::= private_type_declaration

24 full_type_declaration = TYPE identifie_+iS=_t_pe defini:tion

25 full_type_declaration ::= TYPE identifier left_paren

discriminant_specificatlon {;discriminant_specification}

right_paren IS type definition

26 type definition ::= enumeratlon type_definitlon ;

27 type_definition ::= integer_type_definition ;

28 type_definition ::= real_type_definltlon ;

29 type_definition ::: array_type__definition ;

30 type_definition ::= record_type_definition ;

31 type_definition ::= access_type_definition ;

32 type_definition ::= derived_type_definition ;

33 subtype_declaration ::= SUBTYPE identifier IS subtype_indication

34 subtype_indication ::= type mark

35 subtype_indication ::= type mark constraint

36 type_mark ::= type_namelsubtypename

+

- 68 -

m_

wm

_w

ww

w_

wu

_w

um

uw

um

_m

un

_u

ml

B_

ww

ww

m_

mu

ww

37 constraint ::= range constraint

38 constraint ::= floating_point constraint

39 constraint ::: fixed_point_constraint

40 constraint ::: (general_component_associations)

41 derivedtype_definition ::= NEW subtype_indication

42 range_constraint ::: RANGE simpleexpression

43 range constraint ::= RANGE simple_expression ..

simple_expression

44 enumeration_type definition ::= (

enumeration_literal_specification
{,enumeration_literal_specification])

45 enumeration_literalspecification ::= enumeration literal

46 enumeration literal ::= identifier

47 enumeration_literal ::= character_literal

48 integer_type_definition ::= range_constraint

49 real_type_definition ::= floating_point_constraint

-- 50 real_type_definition ::: fixed_point_constraint

-- 51 floating_point_constraint ::= floating_accuracy --definition

-- [range_constraint]

-- 52 floating_accuracy-definition ::= DIGITS simple_expression

--. 53 fixed_point_constraint ::= fixed_accuracy-definition

-- [range_constraint]

-- 54 fixed_accuracy_definition ::= DELTA simple_expression
wm

-- 55 array_type_definition ::= unconstrained_array-definition

-- 56 array_type-definition ::= constrained_array_definition

-- 57 unconstrained_array_definition ::= ARRAY (

-- index_subtype_definition {,index_subtype_definition]) OF

-- subtype_indication

-- 58 constrained_array_definition ::= ARRAY index_constraint OF

-- subtype_indication

- 69 -

mm

W_

IU

_N

ml

m_

W_

W_

mm

_t

_W

_u

11

_u

WW

ww

mm

Ul

_m

ww

WW

_w

ii

ml

_w

Im

W_

ii

mw

_g

WW

mm

w_

wl

_m

_m

mm

m_

mm

w_

59 Index_subtype_definition ::= name RANGE <>

60 Index_constraint ::= (discrete_range {,discrete_range})

61 dlscrete_range ::= name range_constraint

62 discrete_range ::= range

63 range ::= simple_expression

64 range ::= simple_expression .. simple_expression

65 record_type_definition ::= start of record_type record_terminal

component_list END RECORD

66 component_list ::= {pragma_decl) {componentdeclaration}

component_declaration closing_{pragma_decl]

67 component list ::= {pragma_decl) {component_declaration]'

variant_part {pragma_decl}

68 component_list ::= null_statement {pragma_decl}

69 componentdeclaration ::= identifier_list : subtype_indication

[:=expression] ;

70 discriminant_specification ::= identifier_list : type_mark
[:=expression]

71 variant_part ::: CASE__identifier__IS

{pragma_variant]__variant___{variant] END CASE ;

72 variant ::: WHEN__variant_choice__{Jvariant_choice}=>

component_list

73 variant ::: WHEN__variantOTHERS__=> component list

74 choice ::= slmple_expression

75 choice ::= simple_expression .. simple_expression

76 choice ::: name range_constraint

77 access_type_definition ::: ACCESS subtype_indication

78 incomplete_type_declaration ::= TYPE identifier ;

79 incomplete type declaration ::= TYPE identifier left_paten

discriminant_specification [;discriminant_specification]

right_parch ;

- 70 -

11

ml

_m

11

_w

iI

um

u_

mm

_u

_m

_m

u_

mm

ml

_m

m_

mm

wm

wm

wm

mm

wl

_m

mm

_m

m_

_m

ul

_m

m_

wm

_m

im

_m

80 declarative_part ::: {basic_declarative_item}

81 declarative_part ::: {basic_declaratlveitem] body

{later_declarative_item]

82 basic declarative item ::= basic declaration

83 baslc_declarativeitem ::: representation_clause

84 basic declarative {tem ::= use clause

85 later_declarative item ::= body

86 later_declarative_item ::: subprogram_declaration

87 later_declarative_item ::= package_declaration

88 later_declarative_Item ::= task_specification

89 later_declarative_item ::: generic_speciflcation

90 later_declarative_item ::: use clause

91 later_declarative_item ::= generic_instantiation

92 body ::: proper_body

93 body ::= body_stub-

94 proper_body ::: subprogram_body

95 proper_body ::= package_body

96 proper_body ::: task_body

97 name ::: identifier

98 name ::: character llteral

99 name ::= strlng_literal

100 name ::: indexed__component

101 name ::: selected_component

102 name ::: attribute

103 indexed_component ::: name (general_component_associations)

104 selected_component ::= name selector

- 71 -

_w

_w

_m

_w

w_

_m

wm

m_

_w

mm

_w

_w

u_

_m

m_

_m

_m

ww

_m

_w

_w

_E

wl

m_

ww

105 selected_component ::: name . ALL

106 selector ::: identifier

107 selector ::: character literal

108 selector ::: string_literal

109 attribute ::: name ' attribute designator

110 attribute_designator ::: identifier

111 attribute designator ::= DIGITS

112 attribute_designator ::: DELTA

113 attribute designator ::: RANGE

114 aggregate ::: (component_associations)

115 component_associations ::: expression,expression{,expression]

[,others=>expression]

116 component_associations ::= expression,expression{,expresslon} ,
choice{Ichoice}=>expression {,choice{Ichoice}=>expression}

[,others=>expression]

117 component_associatlons ::: expression ,
choice{Ichoice}=>expression {,choice{Ichoice}:>expression]

[,others=>expression]

118 component_associations ::: choice{Ichoice}:>expression

{,choice{Ichoice}=>expression] [,others=>expression]

119 component_associations ::: expression , others:>expression

120 component_associatlons ::: others:>expression

121 general_componentassociations ::: gaexpression{,ga._expression}

122 general_componentassociations ::: ga_expression{,ga_expression}
, identifier{lidentifier]=>expression

{,identifier{lidentifier}=>expression}

123 general_component_associations ::=
identifier{ fidenti fier }:>expression

{,identifier{ Iidentifier} =>expression]

124 expression ::= relation

- 72 -

-- 125 expression ::: relation{AND__relation]

-- 126 expression ::= relation[OR__relation]

-- 127 expression ::= relation{XOR___relation}
--w

-- 128 expression ::= Pelatlon{AND__THEN___relation]

-- 129 expression ::= relation{OR ELSE_ relatlon]

-- 130 relation ::= simple_expression

-- [relational_operator_slmple_expression]

-- 131 relation ::= slmple_expresslon [NOT]IN range

-- 132 slmple_expression ::=

-- [unary_addlng_operator]term{binary_addlng_operatorterm}
m--

-- 133 term ::= factor[multiplying_operator__factor]

-- 134 factor ::= primary [exponentiating_operator__primary]

-- 135 factor ::= high_precedence_unary_operator primary

-- 136 parenthesized_expresslon ::= (expression)

-- 137 primary ::= numerlc_literal

-- 138 primary ::= NULL

-- 139 primary ::= name

-- 140 primary ::= allocator

-- 141 primary ::= quallfled_expresslon

-- 142 primary ::= aggregate

-- 143 primary ::= parentheslzed_expression

-- 144 relational_operator ::= =

-- 145 relatlonal_operator ::= /=

-- 146 relational_operator ::= <

-- 147 relational_operator ::= <=

-- 148 relational_operator ::= >

-- 149 relational_operator ::= >=

- 73 -

-- 150 binary_adding_operator ::= +

-- 151 binary_adding_operator ::= -

-- 152 binary_adding_operator ::= &

-- 153 unary adding_operator ::= +

-- 154 unary adding_operator ::= -

-- 155 high precedence unary operator ::= ABS

-- 156 high_precedence_unary_operator ::= NOT

-- 157 multiplying operator ::= *

-- 158 multiplying_operator ::= /

-- 159 multiplying operator ::= MOD

-- 160 multiplying_operator ::= REM

-- 161 exponentiating operator ::= **

-- 162 qualified_expresslon ::= name ' aggregate

-- 163 qualified_expression ::: name ' parenthesized_expression

-- 164 allocator ::= NEW type_mark

-- 165 allocator ::: NEW type_mark (general_component _associations)

-- 166 allocator ::= NEW expanded_name ' parenthesized_expression

-- 167 allocator ::= NEW expanded_name ' aggregate

-- 168 sequence of statements ::= {pragma_stm] statement {statement}

-- 169 statement ::= simple_statement

-- 170 statement ::= compound_statement

-- 171 statement ::= {label]+ simple_statement

-- 172 statement ::= {label}+ compound_statement

-- 173 simple_statement ::= null_statement

-- 174 simple_statement ::= assignment_statement

7--

- 74 -

w_

w_

_w

_w

gm

_m

_m

_m

_u

lw

_u

im

iw

_D

ml

_w

m_

_u

_u

w_

w_

m_

_m

gl

w_

tw

mw

mm

m_

Bw

m_

m_

w_

mm

ml

175 simple_statement ::= exit_statement

176 simple_statement ::= return_statement

177 slmple_statement ::: goto_statement

178 simple_statement ::: delay_statement

179 simple_statement ::= abort_statement

180 simple_statement ::: raise_statement

181 simplestatement ::= code_statement

182 simple_statement ::= call_statement

183 compound_statement ::= if_statement

184 compound_statement ::: case_statement

185 compound_statement ::: loop_statement

186 compound_statement ::= blockstatement

187 compoundstatement ::= accept_statement

188 compound_statement ::= select_statement

189 label ::: << identifier >>

190 null_statement ::: NULL ;

191 assignment_statement ::: name :: expression ;

192 if_statement ::: IF condition__THEN_._sequence of statements

[ELSIF__condition__THEN__sequence of statements}

[ELSE___sequence of statements] END IF ;

193 condition ::: expression

194 case_statement ::: CASE___expression__IS

{pragma_alt}___case_

statement_alternativem{casestatementalternative}
END CASE ;

195 case_statement_alternative ::: WHEN___choice{Ichoice}=>

sequence of statements

196 case_statement_alternative ::: WHEN__OTHERS__:>
sequence of statements

- 75 -

_Q

_Q

m_

mw

197 loop_statement ::: [loop_identifier:] loop_terminal
sequence of statements END LOOP [identifier] ;

198 loop_statement ::: [loop_identifier:] iteration rule

loop_terminal sequence of statements END LOOP [Tdentifier] ;

199 iteration rule ::: WHILE condition

200 iteration_rule ::: FOR identifier IN discrete_range
m_

-- 201 iteration_rule ::= FOR identifier IN REVERSE discrete_range

202 declarative_part__begin_end_block ::= declarativepart

begin_endblock

_m

wm

w_

w_

im

wm

_m

203 begin_end_block ::: begln_terminal sequence of statements END

204 begin_end_block ::: begin_terminal sequence of statements

exception_terminal {pragma_alt}__exception_handler_list END

205 block statement ::: [block identifier:] declare terminal

decla_ative_part__begin_end_block [identifier] ?

206 block_statement ::: [block_identifier:] begin_end_block
[identifier] ;

207 exit_statement ::: EXIT ;

208 exlt_statement ::: EXIT WHEN condition ;

209 exit_statement ::: EXIT expanded_name ;

210 exit_statement ::: EXIT expanded_name WHEN condition ;

211 return_statement ::= RETURN ;

212 return_statement ::= RETURN: expresslon ;

213 goto_statement ::: GOTO expanded_name;

-- 214 subprogram declaration ::: subprogram_specification ;

-- 215 subprogram_specification ::= PROCEDURE start_identifier

-- 216 subprogram_specification ::= PROCEDURE start_identifier

-- left_paten parameter_specification {;parameter_specification}

-- righ__p_ren

-- 217 subprogram_sPecification ::= FUNCT!ONdesignator RETURN
-- type_mark

- 76 -

218 subprogram_speclfication ::= FUNCTIONdesignator left_paten
parameter specification {;parameter specification} right_paten
RETURNtype mark

219 designator ::: identifier

220 designator ::= string_literal

221 parameter_specification ::= identifier_list modetype_mark
[:=expression]

-- 222 mode ::= generic_parameter_mode

-- 223 mode ::= : OUT

-- 224 generic_parameter_mode ::= :

-- 225 generic_parameter_mode ::= : IN

w--

226 generic parameter_mode ::: : IN OUT

227 subprogram_body ::: subprogram_speclflcation__IS

declaratlve_part__begln_end_block [end_designator] ;

228 call statement ::: name ;

229 packagedeclaration ::= packagespecificatlon ;

230 package_speclfication ::= PACKAGEwstart_identifierIS

{baslcdeclarativeitem}' END [identifier]

231 package specification ::= PACKAGE__start_identifier IS

{basicdeclarative_item}' prlvate_terminal

{basic_declarative_item}' END [identifier]

232 packagebody ::: PACKAGE__BODY__start_identifierIS

declarative part END [identifier] ;

233 package_body ::= PACKAGE BODY__start_identifierIS

declarativepart___beginendblock [identifier] ;

234 prlvate_type declaration ::: TYPE identifier IS LIMITED PRIVATE

235 private type declaration ::= TYPE identifier left_paten

discriminant_specification {;discriminantspecification}

right paren IS LIMITED PRIVATE ;

-- 236 private type declaration ::= TYPE identifier IS PRIVATE ;

-- 237 private_type_declaration ::= TYPE identifier left parch

- 77 -

_m

w_

u_

ml

mw

dlscriminant_specification {;discriminant_specification]

right_paren IS PRIVATE ;

238 use_clause ::= USE expanded_name [,expanded_name] ;

239 renaming_colon_declaration ::: identifier_list : type_mark
-- RENAMES name ;

-- 240 renaming colon declaration ::= identifier list : EXCEPTION

-- RENAMES expanded_name ;

-- 241 renaming declaration ::= PACKAGE start identifler RENAMES

-- expanded_name ;

-- 242 renaming_declaration ::: subprogram_specification RENAMES name ;

-- 243 task_specificatlon ::= TASK start_identifier ;

-- 244 task_speclfication ::= TASK TYPE start_identifier ;
n--

-- 245 taskspecification ::= TASK start identifier IS

-- {entry_declaration]{representationclause} END [identifier] ;

-- 246 task_specificatlon ::= TASK TYPE start identifier IS

-- {entry_declaration}{repre_ntati-on_cla_se} END [ide---ntifier];

-- 247 task_body ::: TASK__BODY__start_identifier IS

-- declaratlve_part__begln_end_block [identifier] ;

-- 248 entry_declaration ::= ENTRY identifier

-- [(discrete_range)][formal_part] ;

-- 249 accept_statement ::= ACCEPT start_identifier

-- [(expresslon)][formal part] ;
m--

-- 250 accept statement ::=

-- ACCEPT__start_identifier[(expression)][formal_part]_.__
-- sequence of statements END [identifier] ;

-- 251 delay_statement :}= DELAY simple_expresslon ;
it

-- 252 select_statement ::= selective_wait

-- 253 select_statement ::= conditional_entry_call

-- 254 select_statement ::= timed_entry_call

-- 255 selective wait ::= select terminal select alternative

-- {OR_select_alternative] [ELSE__sequence of statements] END
-- SELECT ;

- 78 -

_m

m_

wu

m_

t_

w_

_g

D_

m_

w_

_w

256 select_alternative ::: {pragma_stm}
WHEN condition => selective wait alternative

257 select_alternative ::= {pragma_stm] selective_wait_alternative

258 selective_wait_alternative ::: accept_alternative

259 selective wait_alternatlve ::: delay_alternative

260 selective wait alternative ::= terminate alternative

261 accept_alternatlve ::= accept_statement [sequence of statements]

262 delay_alternative ::= delay_statement [sequence of statements]

263 terminate_alternative ::= TERMINATE__; {pragma_stm}

-- 264 TERMINATE__; ::= TERMINATE ;

-- 265 conditional_entry_call ::= select_terminal {pragma_stm}

-- call__statement___[sequence of statements] else_termlnal

-- sequence of statements END SELECT ;

-- 266 timed_entry_call ::= select terminal {pragma_stm}

-- call_statement__[sequence o_statements] or_terminal

-- {pragma_stm} delay_alternative in timed_entry END SELECT ;

-- 267 abort_statement ::= ABORT name {,name} ;
u_

-- 268 compilation ::= {compilation_unit]

-- 269 pragma_header ::= PRAGMA identifier

-- 270 compilation_unit ::= pragma_header (

-- generalcomponent__associations) ;

-- 271 compilation_unit ::= pragma_header ;

272 compilation_unit ::= context_clause library or secondary_unitwm

mm

ii

um

wl

_m

m_

_w

lu

273 librar_ or secondary_unit ::= subprogram_declaration

274 library or secondary_unit ::= package_declaration

275 library or secondary_unit ::= generic_specification

276 library or secondary_unit ::= generlc_instantiation

277 librar_ or secondary_unit ::: subprogram_body

278 library or secondary_unit ::= package_body

- 79 -

w_

w_

w_

wl

m_

m_

_Q

wm

m_

-- 279 library or secondary_unit ::= subunit

-- 280 context_clause ::= [with_clause[use_clause}}

-- 281 with_clause ::= WITH identifier (,used_identlfier] ;

282 body_stub ::: subprogram speciflcation IS SEPARATE ;

283 body_stub ::: PACKAGE BODY start_identifier IS SEPARATE ;

284 body_stub ::= TASK BODY start_identifier IS SEPARATE ;

285 subunit ::: SEPARATE__(__expandedname__) proper_body

286 exceptlon_declaration ::= identifierlist : EXCEPTION ;

287 exception handler :::

WHEN__exception_cholce___{lexception_choice}m=>
sequence of statements

-- 288 exception_choice ::: expanded_name

-- 289 exceptlon_eholee ::= OTHERS

-- 290 raise_statement ::: RAISE ;

-- 291 false_statement ::: RAISE expanded_name ;

-- 292 generic_speciflcation ::= generic__formal__art

-- subprogram_specification ;

-- 293 generlc_specificatlon ::= generlc_formal_part

-- package_specificatlon ;

-- 294 generlc_formal_part ::= generic_terminal

-- {generic_parameter declaration]

w_

wu

295 genericparameter_declaratlon ::= identifier_list

generlcparameter_mode type_mark [:=expression] ;

296 generlc_parameter_declaration ::= TYPE identifier IS

generlc_type_definition

297 generic_parameter_declaration ::= TYPE identifier left_paten

discriminant_speclfication {;discriminant_specification]

rlght_paren IS generlc_type_definition_;

298 generic_parameter_declaration ::: WITH subprogram_specification

[IS_name or <>] ;
i

• j

- 80 -

-- 299 generic_type_definition ::: (<>)

m--

m--

im

wl

300 generic_typedefinition ::: RANGE <>

301 generic_type_definition ::: DIGITS <>

302 generic_typedefinition ::: DELTA <>

303 generic_typedefinition ::: LIMITED PRIVATE
z

304 generic_type_definition ::= PRIVATE

305 generic_typedefinition ::: array_type_definition

306 generic_type_definition ::: access_type_definition

307 generic_instantiation ::= PACKAGE__start_identifier__IS NEW

expanded_name ;

308 generic_instantiation ::: PACKAGE start identifier IS NEW
expanded_name (generic_associatio--n {,gen-eric_associ_tion}) ;

309 generic_instantiation ::= FUNCTION__designatorIS NEW

expanded_name ;

310 generic instantiation ::= FUNCTION__designatormIS NEW

-- expanded_name (generic_association {,generic_associatlon}) ;

-- 311 generic_instantiation ::= subprogram_specification IS NEW

-- expanded_name ;

_w

m_

_w

312 generic instantiation ::: subprogram_specification___IS NEW

expanded_name (generic_association {,generic_association}) ;

313 generic_association :::

[genericformal_J_arameter=>]generic_actual_parameter

314 generic_formal_parameter ::= identifier

315 generlcformal_parameter ::= string_literal

316 generic_actual_parameter ::: expression

317 representation_clause ::: length_clause

318 representation_clause ::: enumeration_representation_clause

319 representation_clause ::= address_clause

320 representationclause ::: recordrepresentation_clause

- 81 -

_w

_m

_m

m_

_w

mw

m_

_m

321 length_clause ::= FOR attribute USE simple expression ;

322 enumeratlon_representation_clause ::: FOR identifier USE

aggregate ;

323 record_representation_clause ::: FOR identifier USE

start of record_type record_terminal {component_clause}' END
RECORD ;

324 record_representation_clause ::: FOR identifier USE

start_of_record_type RECORD alignment_clause {component_clause}'
END RECORD ;

-- 325 component_clause ::: name AT slmple_expresslon range_constraint

-- 326 allgnment_clause ::= AT MOD simple_expresslon ;

-- 327 address_clause ::= FOR identifier USE AT simple__expression ;

w_

w_

328 code_statement ::= name ' aggregate ;

329 {pragma_decl} ::: EMPTY

330 {pragma_decl} ::: {pragma._dec!} pragma

331 [pragma_vartant] ::: EMPTY

332 {pragma_varlant} ::: {pragma_variant} pragma

333 {pragma stm] ::: EMPTY

334 {pragmas£m} {pragma_stm} pragma

335 {pragmaalt} ::: EMPTY

-- 336 {pragma alt} ::: {pragma alt} pragma

-- 337 [::expression] ::: EMPTY

-- 338 [::expression] ::: :: expression

-- 339 {,identifier] ::= EMPTY

-- 340 {,identifier] ::: {,identifier] , identifier

-- 341 type_name{subtype_name ::: expanded name
_m

-- 342 expanded_name ::= identifier
_J

-- 343 expanded_name ::= expanded name identifier

- 82 -

-i,,.:. >..

-- 344 {,enumeration_literal_specification} ::: EMPTY

-- 345 {,enumeration literal_specification] :::

-- {,enumeration_--literal_specification] ,

-- enumeration_literalspecificatlon

-- 346 {range_constraint} ::= EMPTY

-- 347 {range_constraint} ::: range._eonstraint

-- 348 {,index_subtype_definition} ::= EMPTY

-- 349 {,index_subtype_definition} ::= {,index_subtype_definition] ,

-- index_subtype_definition

-- 350 {,discrete_range] ::= EMPTY

-- 351 {,discrete range] ::: {,discrete_range} , discrete_range

-- 352 {component_declaration} ::= EMPTY

-- 353 {component_declaration] ::= {component_declaration}

-- component_declaration {pragma_decl}

-- 354 {;discriminant_specification] ::= EMPTY

-- 355 {;discriminant_speciflcation} ::= {;discriminant_specification}
-- discriminant_; discriminant_specification

-- 356 {variant] ::= EMPTY

-- 357 {variant] ::= {variant] variant

-- 358 {[choice] ::= EMPTY

-- 359 {Ichoice] ::= {Ichoice} 'I' choice

-- 360 {basic_declarative_item} ::= {pragma_decl]

-- 361 {basic_declarative_item} ::= {basic_declarativeitem]
-- basic_declarative_item {pragma_decl]

-- 362 {basic_declarative_item} ::=

-- {basic_declarative item] basic declarative_itemlEMPTY
-- {basic_eolon_decla_ation]-- -

-- 363 {later_declarative_item} ::: {pragma_decl}

-- 364 {later_declarative_item} ::= {later declarative_item}
-- later_declarative_item {pragma_declT

- 83 -

-- 365 expresslon,expression{,expression} ::= expression , expression

-- 366 expression,expression[,expression] ::=
-- expresslon,expresslon{,expression} , expression

-- 367 ohotce{lehoiee]=>expression ::= choice {[ehotee] => expression
_Q

-- 368 {,eholee[leholee}=>expresston} ::= EMPTY

36g [,ehoice{lehoice]=>expresslon] ::=
{,eholee{lehotce}=>expression] , ehotee[leholee}=>expression

w_

w_

w_

w_

_m

370 [,others=>expression] ::: EMPTY

371 [,others=>expression] ::= , others=>expression

372 others:>expression ::= OTHERS => expression

373 ga__expression ::: expression

374 ga_expression ::= simple_expression .. simple_expression

375 ga_expression ::= name range_constraint

376 ga_expression{,ga_expresslon] ::= ga_expression

377 ga_expression{,ga_expression} ::: ga_expresslon{,ga__expression}

, ga_expression

378 identifier{lidentlfier}=>expresslon ::: identifier [lidentifier}

=> expression

379 [,identifier[lidentifier}:>expression] ::: EMPTY

380 [,identifier{lidentifier]:>expression} ::=

{,identifier([identifier]:>express!on} ,

identifier{lidentifier}:>expresslon

..... L

381 {lidentifler} ::: EMPTY

382 {lidentifier} ::: {lidentifier] 'I' identifier

383 relation[ANDrelation] ::= relation AND relation

-- 384 relation{A___relation} ::= relation{AND___relation] AND relation

-- 385 relation[OR___relation] ::: relation OR relation

.-- 386 relation{OR__relation] ::: relation{OR__relation] OR relation

- 84 -

-- 387 relation{XOR___relation} ::: relation XOR relation

-- 388 relation[XOR___relation] ::= relation{XOR___relation] XOR relation
--w

-- 389 relation[AND__THEN___relation] ::= relation AND THEN relation
--w

-- 390 relation{AND__THEN__relatlon] ::= relation{AND__THEN__relation}
-- AND THEN relation

-- 391 relation{OR_ELSE__relation} ::: relation OR ELSE relation
--w

-- 392 relation[OR__ELSE___relation] ::= relation{OR___ELSE___relation] OR
-- ELSE relation

w--

nu

w--

--w

--w

--m

--w

393 [relatlonal_operator_simple_expression] ::: EMPTY

394 [relatlonal_operator_simple_expression] ::= relational_operator
simpleexpression

395 {NOT}IN ::: IN

396 {NOT}IN ::: NOT IN

397 [unary_addlng_operator]term{binary_adding_operator__term} :::
term

-- 398 [unary_adding_operator]term{binary_adding_operator___term] :::

-- unary_addlng_operator term

-- 399 [unary_adding_operator]term{binary_addingoperator term] ::=

[unary_adding_operator]term{binary_adding_operator_term}

binary adding operator term

400 factor{multiplying_operator__factor} ::: factor

401 factor{multiplylngoperator_factor} :::

factor{multiplying_operator__factor} multiplying_operator factor

402 [exponentiating_operator__primary] ::: EMPTY

403 [exponentiating_operator__primary] ::: exponentiating_operator
primary

404 {statement] ::: [pragma stm]

405 {statement} ::: {statement} statement {pragma_stm}

406 {label}+ ::: label

407 {label}+ ::: {label]+ label

- 85 -

wg

_m

_u

wm

lu

_w

_w

m_

408 condition__THEN_sequence of statements ::: condition___THEN

sequence of statements

409 {ELSIF___condition___THEN__sequence of statements} ::: EMPTY

410 {ELSIF___condition___THEN___sequence of statements] ::=

{ELSIF__conditionmTHEN_sequence of statements]
ELSIF condition THEN sequence of statements

411 [ELSE___sequence of statements] ::= EMPTY

-- 412 [ELSE__sequence of statements] ::= else_terminal

-- sequence of statements
m_

-- 4]3 [case_statement_alternative] ::= EMPTY

414 {case_statement_alternative} ::= [case_statement_alternative}

case_statement_alternative

mw

u_

_t

ww

_m

uw

gm

mg

_m

ww

415 [loop_identifier:] ::= EMPTY

416 [loop_identifier:] ::: identifier :

417 [identifier] ::: EMPTY

418 [identifier] ::: identifier

419 [block_identifier:] ::: EMPTY

U--

wm

_m

420 [block_identifler:] ::: identifier :

-- 421 [pragma_alt]__exception_handler_llst ::= {pragma_alt)

-- exception_handler_list

-- 422 exceptionhandler_list ::: exception_handler

-- 423 exceptlon_handler_list ::= exception_handler_list

-- exceptionhandler

-- 424 [;parameter_specification] ::= EMPTY

-- 425 [;parameter_specification] ::: [;parameter_specification] -

-- parameter_; parameter specification

426 [end designator] ::: EMPTY _-

427 [end_desig6atOr]_::: identifier _ _ _ :

428 [end designator] ::: string_literal

429 {,expanded name] ::: EMPTY

- 86 -

ii

m_

ww

w_

_u

u_

ml

wl

ii

w_

mw

ww

wu

_m

w_

430 (,expanded_name} ::= {,expanded_name] , expanded_name

431 {entry_declaration} ::: {pragma_decl}

432 {entrydeclaration} ::: {entry_declaratlon} entry_declaration

{pragma_decl]

433 {representation_clause} ::: EMPTY

434 {representation_clause} ::= {representation_clause}

representation_clause {pragma_decl}

435 [(discrete_range)][formal part] ::: EMPTY

436 [(discrete range)][formal_part] ::= left_paren
parameter specification {;parameter specification] right paren

437 [(diserete_range)][formal_part] ::= left_paten discreterange

right_paten

-- 438 [(discrete_range)][formai part] ::: left paten discrete_range

-- right paren left_.paren parameter specification

{;parameter_specification] right parenul

_m

w_

u_

ml

m_

lu

_u

mm

_D

w_

mm

mw

m_

439 [(expression)][formal_part] ::= EMPTY

440 [(expression)][formal part] ::: left_paren

parameter_specification [;parameter_specification] right_paren

441 [(expression)][formal_part] ::: left__paren expression

right_paten

442 [(expression)][formal_Jsart] ::: left__paren expression

right paren left_paten parameter_specification

{;parameter-apecification] right paren

443 {OR__select alternative] ::: EMPTY

444 {OR___select_alternative] ::= {OR_selectalternative]

or_terminal selectalternative

-- 445 [sequence of statements] ::= {pragma-atm]

446 [sequence of statements] ::= optional-aequence of statements

u_

_w

447 {,name] ::: EMPTY

448 {,name} ::: {,name} , name

449 {compilation_unit] ::: compilation unit

- 87 -

-- 450 {compilation unit} ::: {compilation unit} compilation unit

-- 451 [with_clause{use_clause]] ::= EMPTY

-- 452 [with_clause{use_clause]] ::= {with_clause{use_clause]]
-- with clause use clause list

-- 453 use_clause_list ::: [pragma__decl}

-- 454 use._elause_list ::= use_clause_list use_clause [pragma_decl}

-- 455 [,used_identifier] ::: EMPTY

-- 456 [,used_identifier] ::: [,used_identifier] , identifier

-- 457 [lexception_choice] ::= EMPTY

-- 458 {lexception_choice] ::: {lexception_choiee] 'i' exception_choice

-- 459 [generic_parameter declaration] ::: EMPTY

-- 460 {generic_parameter_declaration} ::=

-- {generic_parameter declaration] genericparameter_declaration
_m

-- 461 [IS name or <>] ::= EMPTY
w--

-- 462 [IS name or <>] ::= IS name

-- 463 [IS name or <>] ::= IS <>

-- 464 {,generic assoclatlon} ::= EMPTY

-- 465 {,generlc_association} ::= {,generic association} ,

-- genericassociation

-- 466 [generie_formal_parameter=>]generic_actual_parameter ::=

-- generic_actual_parameter
w--

-- 467 [generle_formal parameter=>]generic_actual_parameter ::=

-- generic_formal__parameter => generic_actual Parameter

-- 468 {component_clause} ::= {pragma__decl}

-- 469 [component_clause} ::: [component_clause} component_clause

-- {pragma_decl}

-- 470 record terminal ::= RECORD

-- 471 closing_{pragma decl} ::= {pragma_decl]

-- 472 [component declaration]' ::= {component_declaration]

.

- 88 -

-- 473 start of record_type ::= EMPTY

-- 474 CASE identifier IS ::: CASEidentifier IS

-- 475 WHENvarlant_ choiee___{Ivarlant_choice] => ::=
-- WHEN__cholce___{Ichoice}=>

-- 476 WHENvariant OTHERS=> ::= WHENOTHERS=>

-- 477 WHEN___choice__{Icholce}=> ::= WHENchoice {lehoice] =>

-- 478 WHENOTHERS=> ::= WHENOTHERS=>

-- 479 generic_terminal ::= GENERIC

-- 480 CASE expresslon__IS ::= CASEexpression IS

-- 481 {pragma__alt}___case_
-- statement_alternative__{ease_statement_alternative} ::=
-- {pragma_alt} case statement alternative
-- {ease_statement_alternative}

-- 482 loop_termlnal ::= LOOP

-- 483 begin_terminal ::= BEGIN

-- 484 {pragma variant} varlant{varlant} ::= {pragma_variant]
-- varlant--{varlant]-- -

-- 485 exception_termlnal ::= EXCEPTION

-- 486 declare terminal ::= DECLARE

-- 487 PACKAGE start identifier IS ::= PACKAGE start identifier IS

-- 488 start identifier ::= identifier

-- 489 {baslc__declarative_item]' ::: {baslc_declarative_item}

-- 490 {entry_declaratlon} {representation clause] :::

-- {entry_declaration} {representation_clause}

-- 491 private terminal ::= PRIVATE

-- 492 PACKAGE BODY start identifier IS ::= PACKAGE BODY
-- start identifier IS

-- 493 TASK start identifier IS ::= TASK start identifier IS

-- 494 TASK TYPE start identifier IS ::= TASK TYPE start identifier

- 89 -

m_

ii

_w

ww

_u

_w

a_

_m

im

_m

IS

495 TASK BODY start identifier IS ::= TASK BODY start identifier
IS

496 ACCEPT start identifier [(expresslon)][formal__art]DO :::

ACCEPT s---tart__dentifier[(--expresslon)][formal_art] DO

497 select terminal ::: SELECT

498 call_statementw[sequence of statements] ::: call_statement

[sequence of statements]

499 optional_sequence of statements ::: {pragma_stm} statement
{statement}

-- 500 delay_alternative in timed_entry ::: delay_alternatlve

-- 501 WHEN condition => selective wait alternative ::=
-- WHEN condition => selective walt alternative

-- 502 WHEN condition => ::= WHEN condition =>

-- 503 WHEN exception_choice__{lexception_cholce} :> ::: WHEN

-- exception_cholce {lexception_choice} :>

-- 504 FUNCTION___designator__IS ::= FUNCTION designator IS

-- 505 subprogram_specification IS ::= subprogram_specification IS
w--

-- 506 {component_clause}' ::= {component_clause}

-- 507 SEPARATE (__expanded_name) ::= SEPARATE (expanded_name)

-- 508 {basic_colon_declaration} ::: start{basic_colon__declaration}

-- {basic_colon_declaration}' basic_colon_declaration {pragma_decl}

-- 509 start{basic_colon_declaration} ::: EMPTY

__ 510 {baslc_colon_declaration}' ::: {basic_colon_declaration}'

-- basic_colondeclaration {pragma_decl}

-- 511 {basic_colon_declaration}' ::= EMPTY

-- 512 {basic_declarative_item}basic_declarative_itemlEMPTY ::=

-- {basic_declaratlve_item} basic_declarative_item {pragma_decl}

-- 513 [basic_declarative_item}__basic_declarative_itemIEMPTY ::=

-- [pragmadecl}

-- 514 condition THEN ::= condition THEN

- 90 -

mm

-- 515 ELSIF__condition___THEN ::: ELSIF condition THEN
_w

-- 516 else terminal ::= ELSE

_w

-- 517 or terminal ::= OR

-- 518 discrlminant_; ::= ;

-- 519 parameter_; ::= ;_

-- 520 left_paten ::= (

-- 521 right_paten ::=)

-91 -

"!

w

APPENDIX F

A LEGAL COMPILATION ORDER FOR ASAP UNITS

This appendix lists the compilation units

code in a legal compilation order.

HOST DEPENDENCIES

HOST DEPENDENCIES

GRAMMAR CONSTANTS

GRAMMAR CONSTANTS

LISTS
LISTS

CASE INSENSITIVE STRING COMPARISON

CASE_INSENSITIVE_STRING_COMPARISON
BINARY TREES PKG

BINARY TREES PKG

PARSETABLES

PARSETABLES

STACK PKG

STACK PKG

BINARYTREES

BINARYTREES
LABELED BINARY TREES PKG

LABELED BINARY TREES PKG

LEXICAL ERROR MESSAGE

LEXICAL ERROR MESSAGE

VMS LIB

LEX IDENTIFIER TOKEN VALUE

LEX IDENTIFIER TOKEN VALUE

PARSERDECLARATIONS

PARSERDECLARATIONS

STRING PKG

STRING PKG

ORDEREDSETS

ORDEREDSETS

comprising the ASAP source

(package specification)

(package body)

(package specification)

(package body)

(generic package)

(generic package template)

(package specification)

(package body)

(generic package)

(generic package template)

(package Specification)

(package body)

(generic package)

(generic package template)

(generic package)

(generic package template)

(generic package)

(generic package template)
(package specification)

(package body)

(package specification)

(package body)

(package specification)

(package body)

(package specification)

(package body)

(package specification)

(package body)

(generic package)

(generic package template)

- 92 -

ARC 2686

• .; '_." °: _i: _i,,i_ _ _S! :_

_b _ _ _

MCCABE DEFINITIONS

STATES_ACK

STATESTACK

STRING SCANNER

STRING SCANNER

ASAP STACK

ASAP STACK

CASEINSENSITIVELESSTHAN

STRING LISTS

PAGINATED OUTPUT

PAGINATED OUTPUT

FLOW GRAPH PKG

FLOW GRAPH PKG

MCCABE STACK

MCCABE STACK

PARSESTACK

PARSESTACK

COMMAND LINE INTERFACE

COMMAND LINE INTERFACE

STRINGORDEREDSET

ASAP DECLARATIONS

ASAP COUNTS ROUTINES

ASAP COUNTS ROUTINES
BLO_STACKPKG

BLOCKSTACKPKG

LEX

LEX

LEX.GETNEXTNONCOMMENTTOKEN
LEX.WRITE LINE

DATABASEPKG

DATABASEPKG

SYMBOLTABLEPKG

SYMBOLTABLEPKG

ASAP REPORTS

ASAP REPORTS

ASAP REPORTS.IDENTIFIERSUMMARYREPORT

ASAP REPORTS.STATEMENTSUMMARYREPORT

ASAP REPORTS.HALSTEADMEASURESREPORT

ASAP REPORTS.UNITCONTENTSUMMARYREPORT

ASAP REPORTS.PROJECTSUMMARYREPORT

ASAP REPORTS.PROJECTSUMMARYREPORT.

BUILDUNITCOUNTSPART

ASAP REPORTS.PROJECTSUMMARYREPORT.

BUILDUNITCOUNTSPART.ADDTOGLOBALCOUNTS

ASAP REPORTS.PROJECTSUMMARYREPORT.

BUILDUNITCOUNTSPART.FINISHGLOBALCOUNTS

ASAP REPORTS.PROJECTSUMMARYREPORT.

BUILDUNITCOMPLEXITIESPART

ASAP REPORTS.PROJECTSUMMARYREPORT.

BUILDGLOBALSUMMARYPART

ASAP REPORTS.SETMCCABEHEADER

{package specification)

(package specification)

(package body)

(package specification)

{package body)

{package specification)

{package body)

{function body)

{package instantiation)

{package specification)

{package body)

{package specification)

{package body)

(package specification)

{package body)

{package specification)

{package body)

{package specification)

{package body)

(package instantiation)

{package specification)

{package specification)

(package body)

{package specification)

(package body)

{package specification)

{package body)

(function body)

{procedure body)

(package specification)

(package body)

(package Specification)

(package body)

{package specification)

(package body)

{procedure body)

{procedure body)

{procedure body)

{procedure body)

{procedure body)

(procedure body)

(procedure body)

(procedure body)

{procedure body)

{procedure body)

(procedure body)

STATEMENTSPKG
STATEMENTS PKG

STATEMENTS PKG.REPORT AND CLOSE SUBPROGRAM

STATEMENTS PKG.PUT FULLY QUALIFIED NAME
STATEMENTS--PKG.REPORT COMPLEXITIES--

STATEMENTS PKG.REPORT TOTAL COMPLEXITY

PARSER

PARSER

PARSER.ASAP INITIALIZE

PARSER.ASAP RESET

PARSER.APPLY ACTIONS

PARSER.APPLY ACTIONS.FINISHUPUNIT

PARSER.APPLY MCCABE ACTIONS

ASAP

ASAP.HELP

ASAP.SETREPORTFLAGS

(package specification}

(package body}

(procedure body)

(procedure body}

(procedure body}

(procedure body)

(package specification}

(package body)

(procedure body)

(procedure body}

(procedure body)

(procedure body)

(procedure body}

(procedure body)
(procedure body)

(procedure body)
7

..... " • -

- 94 -

REFERENCES

[Abrahams and Clarke 79]

Abrahams, P.W. and Clarke, L.A. "Compile-Time Analysis of Data

List - Format List Correspondence," IEEE Transactions on Software

Engineering, Volume SE-5, No. 6, November 1979, pp. 612-617.

[Baker and Zweben 79]

Baker, A.L. and Zweben, S.H. "The Use of Software Science in
" IEEE Transactions on SoftwareEvaluating Modularity Concepts,

Engineering, Volume SE-5, No. 2, March 1979, pp. 110-120.

[Basili 81]

Basili, V.R. "Evaluating Software Development Characteristics :

Assessment of Software Engineering Measures in the Software

Engineering Laboratory," in Proceedings of the Sixth Annual

Software Engineering Workshop, NASA Goddard Space Flight Center,

December 2, 1981.

[Basili and Katz 83]

Basili, V.R., and Katz, E.E. "Metrics of Interest in an Ada

Development," IEEE Workshop on Software Engineering Technology

Transfer, Miami, FL, April 1983, pp. 22-29.

[Basili and Reiter 79]

Basili, V.R., and Reiter, R.W. "Evaluating Automatable Measures of

Software Development," Proceedings of the IEEE/Poly Workshop on

Quantitative Software Models for Reliability, Complexity, and Cost,

Kiameshia Lake, NY, October, 1979, pp. 107-116.

[Basili and Selby 85]

Basili, V.R. and Selby, R.W. "Calculation and use of an

Environment's Characteristic Software Metric Set," Proceedings of

the 8th International Conference o__n_nSoftware Engineering, London,

England, August, 1985.

[Basili, Selby, and Phillips 83]

Basili, V.R., Selby, R.W., and Phillips, T. "Metric Analysis and
" IEEE Transactions onData Validation Across FORTRAN Projects, .--

Software Engineering, Volume SE-9, No. 6, November 1983, pp.

652-663.

[Baslli and Turner 75]

Basili, V.R., and Turner, A.J. "Iterative Enhancement : A

Practical Technique for Software Development," IEEE Transactions o__nn

Software Engineering, Volume SE-I, No. 4, December 1975, pp.

390-396.

- 95 -

[Boehm, Brown, and Lipow 76]

Boehm, B.W., Brown, J.R., and Lipow, M. "Quantitative Evaluation
of Software Quality," Proceedings of the 2nd International
Conference on Software Engineering, San Francisco, CA, October

1976, pp. 592-605.

[Brown and Fischer 78]

Brown, J.R. and Fischer, K.F. "A Graph-Theoretic Apporach to the
Verification of Program Structures," Proceedings of the 3rd

International Conference on Software Engineering, Atlanta, GA, May

1978, pp. 136-141.

[Browne and Johnson 78]

Browne, J.C. and Johnson, D.B. "FAST : A Second-Generation

Program Analysis System," Proceedings of the 3rd International
Conference on Software Engineering, Atlanta, GA, May 1978, pp.

142-148.

[Curtis et al. 79]
Curtis, B., Sheppard, S.B., Milliman, P., Borst, M.A., and Love, T.

"Measuring the Psychological Complexity of Software Maintenance
" IEEE Transactions onTasks with the Halstead and McCabe Metrics, m

Software Engineering, Volume SE-5, No. 2, March 1979, pp.

335-343.

[curtis, Sheppard, and Milliman 79]

Curtis, B., Sheppard, S.B., and Milliman, P. "Third Time Charm :

Stronger Prediction of Programmer Performance by Software

Complexity Metrics," Proceedings of the 4th International

Conference on Software Engineering, 1979, pp. 356-360.

[Decker and Taylor 82]
Decker, W.J. and Taylor, W.A. Fortran Static Source Code Analyzer

Program (SAP_ User's Guide (Revision I), Software Engineering

Laboratory, SEL-78-I02, NASA Goddard Space Flight Center, February

1982.

[DOD 83]

Department of Defense, Washington, D.C. Reference Manual for the

Ada Programming Language, Military Standard

ANSI/MIL-STD-1815A-1983, 1983.

[Dunsmore and Gannon 80]
Dunsmore, H.E. and Gannon, J.D. "Analysis of the Effects of

Programming Factors on Programming Efforts," The Journal of Systems
and Software, Volume I, pp. 141-153, Elsevier North Holland, 1980.

,.. j

- 96 -

[Elshoff 82]

Elshoff, J.L. "The PEEK Measurement System," Research Publication
GMR-4208, GM Research Labs, Warren, MI, November 1982.

[Elshoff 84]

Elshoff, J.L. "Characteristic Program Complexity Measures,"

Proceedings of the 7th International Conference o__nSoftware

Engineering, Orlando, FL, March, 1984, pp. 288-293.

[Fischer 77]
Fischer, K.F. Quality Assurance Software .To°ls Users' Guide, TRW

Defense and Space Systems Report STP-6039, January 1977.

[Fosdick 74]

Fosdick, L.D. "BRNANL -- A FORTRAN Program to Identify Basic
Blocks in FORTRAN Programs," Dept. of Computer Science, University

of Colorado, Boulder, TR CU-CS-040-74, March 1974.

[Gannon, Katz, and Basili 86]
Gannon, J.D., Katz, E.E., and Basili, V.R. "Metrics for Ada

Packages: An Initial Study," Communications of the ACM, Volume 29,

Number 7 (June 1986).

[Gordon 79]

Gordon, R.D. "Measuring Improvements in Program Clarity," IEEE
Transactions on Software Engineering, Volume SE-5, No. 2, March

1979, pp. 79-90.

[Halstead 72]
Halstead, M.H. "N_tural Laws Controlling Algorithm Structure?,"

SIGPLAN Notices, Vol. 7, 1972, pp. 19-26.

[Halstead 77]

Halstead, M.H. Elements o__[fSoftware Science, Elsevier

NorthHolland, New York, 1977.

[Halstead 78]
Halstead, M.H. "Software Science--a Progress Report," US Army

Computer Systems Command Software Life Cycle Management Workshop,

IEEE, August 1978.

[Hamer and Frewin 82]
Hamer, P.G., and Frewin, G.D. "M.H. Halstead's Software Science

" Proceedings of the Sixth International-- A Critical Examination, ___
Conference on Software Engineering, Tokyo, Japan, September 1982,

pp. 197-205.

- 97 -

[Jensen and Valravan 85]
Jensen, H.A. and Vairavan, K. "An Experimental Study of Software
Metrics for Real-Time Software," IEEETransactions on Software

Engineering, Volume SE-11, No. 2, February 1985, pp. 231-234.

[Kafura and Reddy 87]

Kafura, D. and Reddy, G.R. "The Use of Software Complexity
Measures In Software Maintenance," IEE____EETransactionson Software

Engineering, Volume SE-13, No. 3, March 1987, pp. 335-343.

[Kearney et al. 86]

Kearney, J.K., Sedlmeyer, R.L., Thompson, W.B., Gray, M.A., and
" Communications ofAdler, M.A. "Software Complexity Measurement, m

th__eeACM, Volume 29, No. 11, November 1986, pp. 1044-1050.

[Konstam and Wood 85]

Konstam, A.H. and Wood, D. "Software Science Applied to APL,"

IEEE Transactions on Software Engineering, Volume SE-11, No. 10,

October 1985, pp. 994-1000.

[McCabe 76]

McCabe, T.J. "A Complexity Measure," IEEE Transactions on Software
Engineering, Volume SE-2, No. 4, December 1976, pp. 308-320.

[O'Neill, Wallgora, and Goorevich 78]

O'Neill, E.M., Wallgora, S.R., and Goorevich, C.E. Fortran Static

Source Code Analyzer__User's Guide, Software Engineering
Laboratory, SEL-78-002, NASA Goddard Space Flight Center, February
1978.

[Osterweil and Fosdick 75]

Osterwell, L.J. and Fosdick, L.D. "DAVE -- A Validation, Error

Detection and Documentation System for FORTRAN Programs," Dept. of

Computer Science, University of Colorado, TR CU-CS-071-75, 1975.

[Osterweil and Fosdick 76]

Osterweil, L.J. and Fosdick, L.D. "Some Experlences with DAVE --

A FORTRAN Program Analyzer," AFIPS Conference Proceedings, 1976,

pp. 909-915.

[Ottenstein 76]

Ottenstein, K.J. "A Program to Count Operators and Operands for

ANSI-FORTRAN modules," Comp. Sci. Dept. Purdue University, West

Lafayette, IN, Tech. Rep. CSD-TR-196, 1976.

- 98 -

[Ramamoorthy and Ho 74]

Ramamoorthy, C.V. and Ho, S.F. "FORTRAN Automatic Code Evaluation

System (FACES)," Part I. Memo No. ERL-M-466, Electronics Research

Laboratory, University of California, Berkeley, August, 1974.

[Ramamoorthy and Ho 75]

Ramamoorthy, C.V. and Ho, S.F. "Testing Large Software with

Automated Software Evaluation Systems," IEEE Transactions on

Software Engineering, Volume SE-I, No. I, March 1975, pp._46-58.

[Rombach 87]

Rombach, H.D. "A Controlled Experiment on the Impact of Software

Structure on Maintainability," IEE____EETransactionson Software

Engineering, Volume SE-13, No. 3, March 1987, pp. 344-354.

[Ryder 74]

Ryder, B.G. "The PFORT Verifier," Software Practice an___dd

Experience, Volume 4, Oct.-Dec. 1974, pp. 359-377.

[Ryder 79]

Ryder, B.G. "Constructing the Call Graph of a Program," IEEE

Transactions on Software Engineering, Volume SE-5, No. 3, May

1979, pp. 216-226.

[Shen, Conte, and Dunsmore 83]
Shen, V.Y., Conte, S.D., and Dunsmore, H.E. "Software Science

Revisited : A Critical Analysis of the Theory and Its Empirical

Support," IEEE Transactions on Software Engineering, Volume SE-9,

No. 2, March 1983, pp. 155-165.

[Thayer 75]

Thayer, T.A. "Understanding Software Through Empirical Reliability

Analysis,", 1975Spring JointComputing Conference AFIPS Conference
Proceedings, Montvale NJ : AFIPS Press, Vol. 44, May 1975, pp.

335-341.

[Voges, Gmeiner, and yon Mayrhauser 80]

Voges, U., Gmeiner, L., and yon Mayrhauser, A.A. "SADAT -- An

Automated Testing Tool," IEEE Transactions on Software Engineering,

Volume SE-6, No. 3, May 1980, pp. 286-290.

[Walston and Felix 77]

Walston, C.E. and Felix, C.P. "A Method of Programming

" IBM Systems Journal, Vol.Measurement and Estimation,
pp. 54-73.

16, 1977,

: :.:-

- 99 -

[Waters 79]
Waters, R.C. "A MethodFor Analyzing Loop Programs," IEEE
Transactions on Software Engineering, Volume SE-5, No. 3, May

1979, PP. 237-247.

[Woodfield 79]

Woodfield, S.N. "An Experiment on Unit Increase in Problem
" IEEE Transactions on Software Engineering, VolumeComplexity,

SE-5, No. 2, March 1979, pp. 7-6-79.

[Woodward, Hennell, and Hedley 79]

Woodward, M.R., Hennell, M.A. and Hedley, D. "A Measure of

Control Flow Complexity in Program Text," IEEE Transactions o__n_n

Software Engineering, Volume SE-5, No. I, January 1979, pp.
45-50.

L _

- 100 -

